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ABSTRACT

Optical properties of carbon are studied in bulk
state from A v 0.05 to 100 ym for graphite, and from
A "N 0.05 to 1000 ym for glassy carbon; in small particle
state, the optical studies cover the spectral range going
from A v 0.1 to 100 um for all the materials.

A Kramers-Kronig analysis of near normal reflectance
data and/or a reflectance data fit to a Drude-~Lorentz model
gave bulk optical constants. These optical constants are
used in theoretical calculations of extinction and the
results compared with experimental results obtained from
measurements of a variety of carbon particles. It is in-
ferred that the high experimentally observed extinction is

mainly due to a shape effect.

xii
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CHAPTER 1
INTRODUCTION

Optical properties of small particles have become
important for a variety of reasons. For example, atmospheric
scientists are concerned with the effects of small ?articles
on weather. It is known that the role of atmospheric aero-
sols in the earth's heat balance depends on their absorp-
tivity and scattering properties (National Academy of
Sciences, 1975). In order to predict accurately whether the
warming tendency due to absorption and the cocling tendency
due to backscattering in the earth's atmosphere will dominate,
it is necessary to understand the optical properties of
aerosol particulates (Twomey and Huffman, 1982).

The optical properties of small particles are impor-
tant in astrophysics. The astrophysicist needs to under-
stand the extinction by small particles in order to infer
the nature of the solid grains responsible for the observed
interstellar absorptions (Huffman, 1977).

Two further examples demonstrate the great diversity
of applications of small particles. For military applica-
tions, it is desirable to understand the optical properties
of particles which are to be used to generate smoke clouds
for obscuration of laser weapons and surveillance devices;

1
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for certain solar energy collector types, it has been shown
that the energy collection is enhanced by doping the working
fluid with very small absorbing particles (Hunt, 1980).

In applications of the later kinds, it is necessary
to maximize the absorption by small particles. Thus carbon
is a prime candidate material. For example, Abdelrahman,
Fumeaux, and Suter (1979) have chosen graphite particles as
ideal for suspension in the gas of a solar receiver. Hunt
(1978, 1979) has designed a collector-heat exchanger which
will utilize carbon particles suspended in air.

The extinction by small particles can be calculated
for certain shapes if the optical constants as a function of
wavelength are known. Although the literature on.optical
constants of carbon is abundant, the information is dis-
parate and confined to limited spectral regions. Workers
rarely agree with one another in their results. (See Twitty
and Weiman, 1971 for a review.)

In this study, two carbonaceous materials, graphite
and glassy carbon, chosen because they are well defined (and
thus reproducible), are discussed. Graphite is the crystal
form, and glassy carbon appears to be the best defined
carbon variety close to ideally amorphous carbon.

Definitions and concepts which are dealt with in
this work are covered in Chapter 2. 1In Chapter 3, optical
constants of graphite and glassy carbon are surveyed;

reflectance data of these materials are compiled from the
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literature and augmented by our own measurements and/or
extrapolations. The data are analyzed to yield optical
constants over a broad spectral range. In Chapter 4, ex-
tinction by fine particles and smoke of carbon is experi-
mentally measured, and results compared to theoretical
calculations done with the use of the measured optical

constants.
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CHAPTER 2
REVIEW OF CONCEPTS AND DEFINITIONS

This chapter establishes the notation, defines the
optical constants and summarizes the theories which will be
used in this work.

After defining the optical constants of solids and
showing their relation to the dielectric constant, the
classical dispersion relations and the Kramers-Kronig rela-
tions are reviewed. The extinction by small particles are
introduced through the Miz theory for spheres which leads
to the Rayleigh approximations. Rayleigh theory for ellip-
soids, and its generalization to the distributions of
ellipsoidal shape, are then discussed. Finally, a sum rule
for small particle extinction is introduced.

Complex Index of Refraction;
Relation to the Complex Dielectric Constant*

Optical properties of solids deal with the inter-
action of electromagnetic radiation with solid matter. This
interaction is described by wavelength dependent complex

index of refraction:

m(x) = n+ ik ’ (1)

*For a detailed treatment, see any E & M text, Jackson (1975)
for example.
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where n is the real index of refraction and k the index of
absorption. n and k are related to the complex dielectric

function € through the relation:
m? = (n + ik)? = ¢ .

From e = g, + iez it follows that:

€, = n?-k? (2)

€, = 2nk . (3)

The (n,k) or (el,ez) pair describes completely the optical
properties of a material, but they cannot be directly mea-
sured by experiment. The experimental connection is made

through the reflectance:

2
= |r|?

=
E; |

where r, the reflectivity coefficient, is a complex function,
defined at the surface of a solid, as the ratio of the
reflected electric field E. to the incident electric field

Ei' At normal incidence:

(n-1) + ik

T ln+:” + ik (4)
and
_ (n-1)% + k?
R (n¥1)2 + k2 . (3)
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Dispersion Relations

Classical Dispersion Relations*

The classical theory of absorption was developed

by Lorentz (for insulators) and Drude (for free electron

metals). The combined use of the two models yields:

wZ 2
=1 - P + P
e=1 w2 + iyw m"’-—wz-—lyjm

which is equivalent to

2 02 . (w2=wp?2
e = 1 b .1 pj (@5~w") (6)
w wi-w -0
1 73 y2 3 (§ 2)2+Y§ z
2 2
e e S A - M : (7)
2 w(w2+7v?2) J (w%-w2)2-+Y§w2

where mj'Yj and ij are respectively the resonance frequency,
the damping constant and the plasma frequency of the jth
oscillator. They determine the position, the width and the
strength of the jth oscillator. The terms out of the summa-
tion signs are the Drude terms. The summation is over the
number of oscillators. In more compact form (6) and (7)
become:
w2, (w2-w?)
g, = 1+ ] =3 ' (8)

(m:zj_(DZ) 2 3 Y§m2

*For more information, see for example Wooten (1972, Ch. 3).
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wl: wys
€2 7 § (mg_gg)z.Engz : (9)
J

The Drude terms are obtained from (8) and (9) by assuming
that the resonance peak of the first oscillator is at zero
frequency (mj=l = 0).

This multiple oscillator model is used in the
determination of optical constants of solids. From a reflec-
tance curve, the first values of the parameters mj, Y5 and
wp§ are found for each peak by locating its position, and
determining its width and its strength. They are used in
equations (8) and (9) to calculate el(l) and ez(A) which,
by the use of equations (2) and (3) yield n(}) and k(}):
the n and k obtained are used in (5) to yield the reflec-
tance. The parameters are varied until the calculated
reflectance fits the measured reflectance as well as desired,
giving the corresponding €, (1) and g, (A) or n(A) and k(}A).

This technique is still valid even if the solid is
anisotropic. In this case, the sample has to be well

oriented and polarized light must be used.

The Kramers-Kronig Relations*
The reflectivity coefficient can be written as:
r(w) = plw) e . (10)

(10)

*See for example Wooten (1972, Ch. 6 and Appendix G).
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Equating the real parts and the imaginary parts of (4) and
(6) leads to:

- 1-p?
n 1+p2 -2p cos 6 ' (11)
2p sin 6
kK = TFpZ = 2p cos © : (12)

The knowledge of the phase 6 will allow the calculation of
n and k. The determination of 6 can be done through the use
of the Kramers-Kronig relations, which connect the real and
imaginary parts of tpe response function of a linear system.
The response function must have the following character-
istics:

It-has to be frequency dependent.

It has to be causal.

It has to be analytic in the upper half of the

complex w plane.

It can be shown that the reflectivity coefficient is a
response function between the incident and reflected wave

at the surface of a solid. It can also be shown that
1n r(w) = 1ln p(w) + iB(w)

satisfies the requirements for the application of the
Kramers-Kronig relations.
The relation between 6 (w) and p(w) which is of

interest in this treatment is:
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® ]
ow = - Fe [ R
o

where P is a principal part. The removal of the principal

part and the replacement of p(w') by [R(w')l% gives:

_ o [T 1n [R(w") /R 4.
6 (w) = FJ’O wz_wuz dw

In terms of wavelength, the substitution of w = 2mc/A can be

made to yield:

o) = f} f in [RON/ROI] gy | (13)
o

=y AIZ_AZ
Relation (13) suggests that the reflectance has to
be measured from zero to infinite wavelength. This is

impossible in practice; in general, the reflectance is

measured for A such that:

A._ S XA .
min max

Thus, (13) can be rewritten:

A .
_ 22 ("min 1n [R(A")/RM)] .
9(1) - —T_l'— Io }\'2_>\2 d)\
A P
22 [*max 1n [ROA\D/RM)] .., ., 2} in [ROAD/RMT gy
+.'n'_‘[)\ )\'2_)\2 d)‘ +'n' J >\l2_>\2 d)\
min max

= 0;(1) + 6,(2) + 6;(A) .
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10
6, is calculated with the actual experimental data. For
61(1) and 6, (1), some sort of extrapolation has to be done.
For metal and metal-like materials, the Drude model can be
used to find R(A') and compute 6,()). For other kinds of
materials, Steyer (1974) derived a relation based on the
classical dispersion theory.

The short wavelength spectral range is more diffi-
cult to treat. To include all the interband transitions,
the reflectance is approximated by:

s

R(A) = Rlex (l/lle) ’ (14)

where X < Ale and s > 0. Rle

and the wavelength at the last experimental point. At lower

and Ale are the reflectance
wavelengths, the reflectance is approximated by:
— 4
R(A) = Re x (l/lf) . (15)

Re is calculated by the use of (14) at the point where the
second extrapolation starts.

With this extrapolation, it is assumed that the
wavelength is low enough to allow a free-electron descrip-
tion of the electrons.

These extrapolations are used in the integration of

8, (A) to yield (Wooten, 1972, p. 249):
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R PA=2q |
-1 £ ] le
6,0 = 55 1n [Rm_[ 1n [Trg-l

2n+1
(Ale/l)
(2n+1) 2

2n+l
(lf/l)

+ (4‘5) W .

+ % ¥ L? (16)
The parameter s and the wavelength Xf are chosen such that
the calculated optical constants are in agreement with those
obtained from an independent measurement in a limited spec-
tral range. |

The actual reflectance data and the extrapolations
are used in the numerical integration which is done by the

use of Simpson's rule of integration.

Extinction by Small Particles

Introduction to Mie Theory

A beam of light which passes through a collection of
particles is attenuated. This attenuation, due to scatter-
ing and absorption by the particles, is cglled extinction

which is defined to be:
Extinction = Scattering + Absorption .

A way for inferring the extinction is to calculate
the transmission T of the beam through a path length & of
the distribution of particles. For N spherical particles

per unit volume, each of radius a:
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T = I/I_ = exp (-NQegxtma®) 4 (17)

where:

The Q's are called efficiency factors for spheres, and are
related to the following quantities:
Csca = Qscaﬂa2 is the cross section for removal
of energy from the incident beam by scattering,
Cabs = QabsTraz is the cross section for removal

of energy from the incident beam by absorption,
c = C + C . (18)

Mie (1908) and Debye (1909) developed a theory for calcu-
lating the efficiency factors for spheres of arbitrary
sizes. This theory, usually referred to as the Mie theory
is presented in books by van de Hulst (1957), Kerker (1969)
and Bohren and Huffman (1983).

From the theory:

©

0 = 2 7 (2n+l) [la_|2 + |b_|2], (19)
sca x? n=1 n n
Qaps = _ng n£l (2n+1) Re(an+bn) ' (20)

where x = Zna/l is the size parameter. The coefficients
a, and bn are complex expressions involving spherical Bessel
and Hankel functions and their derivatives. They can be

computed for given values of the complex index of refraction
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n and the size parameter x. The computation procedure is
given by Wichramasinghe (1973) and related computer programs
are in the book by Bohren and Huffman (1983).

Theory and experiment are connected as follows.

If we define:
N = n/v |,

where n is the total number of particles in the volume V,
cC = m/V =

where m is the total mass of particles and p the mass den-

sity of the particle material, (17) becomes:

= - o &%
I/IO = exp (- a p)
= exp (- a %) ’ (21a)
- 0
@ = = In (IO/I) B (21b)
1 Io
If the optical density (0.D.) defined as: O0.D., = 33 In T

is used, then o = 2.3 g (0.D.), where ¢ is the mass/area of

particles. Also

2
a = Qext@ = 3 Qext (22)
4/3 T a3 4 a :

o is the volume normalized extinction coefficient and is

related to the mass extinction coefficient ap by:
o
= = . (23)
¢ P

In the case of a size distribution of spheres:
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{
‘ N(a)Q(a)rma’da

4 .33 !
3 ma® da

o =
j N(a)

where N(a) is the number of particles per unit volume with
radii varying between a and a + da.

From (21), o can be determined experimentally by
measuring the transmission and o. The use of (22) leads to
an experimental value of Qext‘

If the particles are very small compared to the
wavelength (a << A) and when the phase shift of light in the
particle is negligible (Im|x << 1) (Rayleigh approximation),
then the Mie efficiency factors can be expanded in power

series as functions of the size parameter x; the lowest

power terms of importance in a first approximation are:

= 8 (&2:_1 ? 24
Qsca 3 X m2+?] ’ ( )
_ m2-1
Qabs = 4 x Im {m} . (25)

Relations (24) and (25) apply when the particles are in a
medium with complex index of refraction m'2 = 1. They can

be generalized to give:

_ 8 | [t
Qsca -3 X I [€+2€m] v (26)

E-E
= m
%abs ~ 4X1m{a—z‘e—m} . (7
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where € is the dielectric constant of the particles and €m
is the dielectric constant of the medium in which they are
embedded.

The Rayleigh approximations have introduced two main
simplifications in the treatment of extinction by small
particles. First of all, there is no shape effect in volume
normalized extinction, as illustrated in Fig. 2.1. At
small radii, the extinction is a constant. However, for
radii above 0.012 pm, the extinction is extremely radius
dependent. One notices a-decrease in extinction for radius
larger than 0.1 pm. This decrease is due to saturation
effect; when absorption is very effective, the inner parts
of the sphere do not participate in the absorption process.
With larger spheres, more of the inner volume is ineffective,
which results in a decrease of the extinction per unit
yvolume.

From an experimental point of view, one does not
have to worry about the size distribution of particles if
they are small enough compared to the wavelength. This
occurs easily in the IR spectral range.

The second simplification introduced by the Rayleigh
approximations is that the shape effects can be more easily

treated theoretically, as will be shown in the next section.
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Fig. 2.1. Absorption and scattering cross sections normal-
ized per unit volume of solid for carbon in the
visible, calculated using Mie theory.
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Rayleigh Theory for Ellipsoids;
The Shape Distribution

Small particles have been discussed with the assump-
tion that they are spherical. Although this is not very
often true, the spherical hypothesis allowed the use of the
Mie theory which can be generalized to infinite cylinders
only. A more realistic shape for particles is the ellipsoid,
for which polarizability in an electric field can be deter-
mined and used in the derivation of an approximate expres-
sion for the absorption and scattering cross-sections, if
the Rayleigh conditions are valid. The derivation of the
polarizability can be found in the bibliography given for
the Mie theory.

For an ellipsoidal particle with semi-axes a, b and

th

c in an electric field parallel to the j axis (3=1,2,3),

polarizability is given by:
E-€
m

\'/
o . = —
3 4w em4-Lj(e—emS

, (28)

where V = (4/3)71 abc is the volume of the ellipsoid. The

depolarization factors Lj are given by:

_ abc ds
L, = =

2 2 2 2 5 ' (29)
(s+a?) {(a?%+s) (b%+s) (c?+s)}

where:

s = a+b+c .
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L, and L, are computed the same way, with the right substi-

tution in (29). Using the integrals by which the Lj's are

calculated, it can be shown that:
3
) L. = 1 . (30)

In the Rayleigh approximations, C and C,, . for a single

sca

ellipsoid of abitrary Lj are:

. 5 €E-€ 2
cd = ke R T ' (31)
sca 6m €m i €E-€n
3 a-em
= . (32)
Cabs kV Im em + Lj (€"Em)

The superscript j shows that E field is parallel to the jth
axis; k = 2n/A. For a collection of ellipsoids randomly
oriented, an average value is taken; the absorption case
is given:

3

€ €
(¢ » = Y o 2 . (33)
abs 3 jzl Lj{[81+8m(l/Lj-l)]2*'E§}

From (33) it can be seen that resonance occurs when:

or

e, = - e (/Ly - 1) . (34)
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Since 0 = Lj < 1, the resonance occurs only for negative
values of € ,. For spheres, L. = 1/3 for all directions, and

J
the resonance is obtained for:

A distribution of identical ellipsoids with arbitrary Lj's
will give three absorption peaks because of the three values
of L..
J
A more general treatment of the preceding
case is done by considering a variety of shapes of

ellipsoids.

Given a shape distribution expression P(L,,L,), it

is possible to compute:

¢
<(cabs>> = “ P(L,,L,) {C,y .’ dL, dL, . (35)

The integration is done over L, and L, only since from (30)
it is seen that only two Lj's are independent.

Assuming that all shapes of ellipsoids are equally
probable, which mathematically means that P(L,,L;) is a

constant, Huffman and Bohren (1980) found (35) to be:

2e¢g
= ™
((Cabs)) = k(W) Im[;-e log (e/engj . (36)
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(For the log calculation, use |e] and -w < 6 < w.) For this
treatment, a system of particles with all shapes of ellip-
soids should produce absorption over the whole spectral
range where e, is negative. Rathmann (1981, p. 18) calcu-
lated aluminum absorption coefficients for spheres, single
ellipsoids and a continuous distribution of ellipsoids.

Relation (36) is used in our theoretical calcula-
tions, and the corresponding curves are labeled CDE

(continuous distribution of ellipsoids).

Sum Rule for Extinction
Bohren and Huffman (1983) have derived a sum rule
for extinction by spherical particles:

o

- 3.3 €(A==)+1
Jo Cext(l) dA = 4r’a’® —4——=

EO==)F2 (37)

For conducting materials, e (A==) is large; thus (37) has an
upper limit such that:

(<]

J Coge (M) ar £ 4am’a® . (38)
(o}

. . . . s - 2.2 . .
Using (22) in conjunction with Cext = Qext T a® gives:

Coxt M) = 2ma®a() - (39)

Wk
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A substitution of (39) in (38) leads to:

Lo

I a(d) ax < 3m2 . (40)
O

This relation will be used to check the sphericity of

experimentally produced particles.
The sum rule (37) was first derived by Purcell

(1969) for spheroidal particles.
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CHAPTER 3
BULK OPTICAL CONSTANTS

Carbon is the generic designation of a large variety
of carbonaceous materials including graphite and amorphous
carbon.- Graphite and amorphous carbon are well defined, but
many types of coal and soot differ in composition and struc-
ture. According to Dalzell and Sarofin (1969), soots are
randomly mixed graphitic particles in a matrix of amorphous
carbon; they differ from one another by their hydrogen/
carbon ratio. The actual difference in the composition of
carbonaceous materials, and apparent differences resulting
from the use of inappropriate experimental technique in the
determination of the optical constants, have led to results,
which in some cases, are hardly comparable. Disagreements
in results are shown through the review of some previous
work presented below. The large variation in published
optical constants can be seen in Fig. 3.1.

Stull and Plass (1960) derived dispersion relations
for carbon, which they used to fit some other workers'
reflectance data between A v 0.436 um and 13 um. The same
method has been used by Dalzell and Sarofin (1969) to fit
soot pellet reflectance data in about the same spectral

22
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range. The results of the two groups do not agree with one
another. More recently, Lee and Tien (1981) derived a dis-
persion model based on electronic band structure considera-
tions. The dispersion constants were determined from the
transmission data of soot flame. They questioned their pre-
decessors' methods and results. Tomaselli et al. (1981)
measured reflectance of pressed pellets of various carbona-
ceous materials. They graphically analyzed data by plotting
iso-reflectance curves and reading n and k from published
tables. None of their results came close to published
results for similar matérials. DiNardo and Goland (1971)
derived optical constants of arc evaporated carbon film by
matching the transition radiation theory to experiments from
A~ 0.23 um to 0.56 um. Arakawa, Williams, and Inagaki
(1977) studied a similar material from A ~ 0.33 um to 2.1
pm. A comparison of the two results shows a clear disagree-
ment (see Fig. 3.1). According to Arakawa et al. (1977),
the optical properties of arc evaporated carbon vary with
the conditions of preparation of the film. Pluchino et al.
(1980) isolated a single micro-sized particle of carbon;
they electrostatically suspended and irradiated it with a
laser beam. The scattered radiation intensity was measured
as a function of angle. Electron-microscopy showed that the
particle was spherical. Data were then analyzed with the
Mie theory. At A ~ 0.48 pm and for a particle radius a =

3.06 um, n and k are found to be 1.7 and 0.8 respectively.
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This review along with Fig. 3.1 has shown that
there is no general consensus on optical constants of
carbon; it has shown also that available optical constants
are confined to a limited spectral range.

In this section, we survey the optical constants of
graphite ana glassy carbon, and gather existing reflectance
data on these materials. In order to calculate the optical
constants over a wide spectral range, the reflectance
information gathered is completed by our measurements and/or
extrapolations wherever it is necessary, to yield a reflec-
tance curve over a wide spectral range, for use in the
Kramers-Kronig analysis. A fit of the reflectance data,
based on the combined use of Drude and Lorentz dispersion
relations has also been done.

Techniques for the determination of optical con-
stants are given; then graphite and glassy carbon are

studied in turn.

Techniques for Measuring Optical Constants

Optical properties of solids are due to the wave-
length dependence of n and k (g, and €,) which cannot be
measured directly experimentally. The techniques used to
collect information leading to optical constants are sum-

marized in Table 3.1.
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Table 3.1. Techniques for determining optical constants of
solids.
From Huffman (1977).
Technique Comments

Transmission methods

(1) n from minimum deviation;
k from transmission and n

(2) n énd k from transmission
and normal incidence reflec-
tance measurements

Reflection methods

(1) Two polarized reflectance

measurements at one oblique

incidence angle

(2) Two reflectance measurements
at different angles

(3) Determination of special

angles (i.e., Brewster's angle)

and reflectance there

(4) Determination of ellipso-
metric parameters

(5) Reflectance in a broad
wavelength range and
Kramers-Kronig analysis

(6) Reflectance vs. wavelength
and oscillator model fit
to the data

Other methods

(1) Electron energy loss
measurements

High accuracy for n

Easy but useful only in
relatively transparent
regions

Larger sample sizes
required

Sensitive to surface
films

Extrapolation to 0 and
to ® necessary

Compact presentation of
results as oscillator
parameters

Does not require
polished surfaces
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Graphite

Perfect graphite crystals are rare. Figure 3.2
represents the ideal natural graphitic structure. The basal
planes are such that every other plane fits exactly over the
first; this is the ABAB arrangement. Another one is such
that the basal planes are in the ABCABC sequence.

‘The atoms of carbon are associated in hexagonal
rings. Each atom has four electrons on its outer shell;
three of them (o-electrons) participate in holding together
the hexagonal ring by covalent bonds; the fourth one (m-
electron) moves in the ring and contributes to the bonding
between planes. Many properties of graphite, including its
optical properties, are highly anisotropic. The anisotropy
of the optical properties is due to the ease with which the
m-electrons move in the layer planes; higher energy is
needed to jump from plane to plane.

Forms most closely approaching the ideal structure
of the material graphite are pyrolytic graphite and annealed
pyrolytic graphite. Pyrolytic graphite is produced by a
decomposition of a hydrocarbon on a hot surface. Although
it is not a true graphite, its properties are extremely
anisotropic. It can be converted into almost perfect single
crystals by heating at temperatures above 2900°C for several
hours. It is then called (stress) annealed pyrolytic

graphite (Shobert, 1964).
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Fig. 3.2. Crystal structures of graphite.

From Shobert (1964).
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The optical properties of graphite depend on the
direction of the E-field with respect to its optical c-axis,

ELl C and E / C leading to €, and€”

samples can easily be prepared by cleavage of the crystal

respectively. Because

in the basal plane, many optical constants for the E.l C
direction are available in the literature. Fewer measure-
ments have been done for E / C since the sample preparation
is considerably more difficult in this case. E L C and

E / C optical constants of graphite will be reviewed in

turn.

Survey of Optical Constants of Graphite

Many workers measured reflectance on natural graph-
ite, pyrolytic graphite or annealed pyrolytic graphite.
They analyzed their data by the Kramers-Kronig method (Taft
and Philipp, 1965: Philipp, 1977), by fitting (Greenaway et
al., 1969; Klucker, Skibowski, and Steinman, 1974) or by the
use of Fresnel's equations (Carter et al., 1965).

Zeppenfeld (1967) was the first to use the electron
energy loss method for deriving optical constants of graph-
ite. This method consists of determining the properties of
bulk materials by measuring the transmission of electron
beams through thin films. €, and €, are obtained by the
Kramers-Kronig analysis of the energy loss function f(w)
which is related to the dielectric function by (Daniels et

al., 1970):
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f(w) = - Im (1/¢€) .

The survey of optical constants is summarized in Table 3.2.

Comparison of results for EL C is seen in Fig. 3.3a
which shows €, in a spectral range which contains a strong
peak. Good agreement exists in the shape of the curve, but
the discrepancy in the magnitude of the peak is obvious.

For E / C, Fig. 3.3b shows complete disagreement
between the results of the reflectance techniques and those
of the electron energy-loss method. Because of the severity
of the discrepancy, Venghaus (1975) repeated the electron
energy-loss measurements on graphite. His results were in
agreement with the measurements done with the same technique
by other workers, but still in disagreement with reflectance
method results. Wessjohan (Venghaus, 1975) computed reflec-
tance using Venghaus (1975) and Klucker et al. (1974)
e data; Venghaus's results compared favorably with experi-
ments, but those from Klucker et al. failed to do so. Al-
though Klucker (1971), who noticed the discrepancy between
his experimental results and calculations, assigned this
failure to scattered light, Venghaus concluded that the
electron energy-loss method gives better results.

In IR (A ~ 2.5 um to 100 um), Venghaus measured
the reflectance on graphite in the EfC direction and ana-

lyzed the data by the Kramers-Kronig method.
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Fig. 3.3. Imaginary part of the dielectric function for the
E Ll C (a) and E / C (b) polarizations of graphite.

As computed by Klucker et al. (1974), Taft and
Philipps (1965), and Zeppenfeld (1967).
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This Study's Investigation on Graphite

In order to have a coherent set of optical constants
in a broad spectral range for the E L C direction of graph-
ite, and also to investigate the discrepancy of the €, peak
at A n Q.088 um, Philipp's (1977) extended reflectance data
(see Fig. 3.4) have been analyzed by the Kramers-Kronig
method. Philipp obtained his extended reflectance data by
combining previously published results (Taft and Philipp,
1965), measurements between A ~v 12.4 uym and 41 um, and
Sato's i1968) data.

It is known that the Kramers-Kronig analysis results
depend strongly on the extrapolation at low wavelengths
(Wooten, 1972). To satisfy the requirements of the extrapo-
lation, which is explained in Chapter 2, some guide values
of n and k found from an independent experiment are needed.
Huffman (1979), in work done at the University of Wisconsin
monochromatic radiation facility, measured the transmission
of a 0.27 uym thick cleaved graphite sample from A ~ 1.25 um
to 0.15 uym. The values of n and k found from this experi-
ment have been used as tests for the choice of the parameter
s and the wavelength A. These values are s = 2, Af ~ 0.0258
um. Taft and Philipp used the resglts of the transmission
of a 400A thick sample from A ~ 0.113 uym to 0.177 pm as
guiding values in their calculations. Results of our calcu-
lations are shown in Figs. 3.5, 3.6, and 3.7 and in

Appendix A.
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Fig. 3.5. Real part of the E L C polarization of graphite
as computed by the Kramers-Kronig method.
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The reflectance data fit result is shown in Fig. 3.8.
A discussion of the discrepancy observed between the data
and the fit from A = 0.3 to 15 pm is given in the "Discus-
sion of Results" section of this chapter. The oscillator
parameters used are presented in Table 3.3.

Representative values of €, and €, for the E/f C
direction of graphite derived from the reflectance and the
electron energy-loss measurements have been converted to n
and k and plotted (Fig. 3.9). Venghaus's results below
A" 2.5 m were obtained privately. Venghaus (1977) argued
that reflectance measurements are not seriously affected by
the roughness of the reflectance surface in the IR wave-
length range; n and k obtained by optical methods are thus
reliable from 2.5 pym to 100 uym. In the short wavelength
range (A v 0.03 to about 0.22 um), the increasing dependence
on the reflectance on the state of the surface as the wave-
length decreases makes the results of the optical method
less reliable than those obtained with the electron energy-
loss technique. Since above X v 0.25 um, the Cerenkov
radiation gives the dominant contribution to the electron
energy-loss for E // C (Tossati and Bassani, 1970), the elec-
tron energy-loss results have been disregarded from A
0.25 pym to 2.5 ym. From 0.15 um to 0.25 pm, geometrical
considerations have been used. The slope of the electron
energy-loss n curve at short A v 0.15 pm is the same as the

slope of the reflectance n curve from A &~ 0.21 um to 0.25 um.
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Oscillator fit of the reflectance of graphite (E.l C polarization).

3.8.

Fig.



Table 3.3. Oscillator parameters for the fit of the
reflectance curve for the EL C direction
of graphite.

Parameter Value (cm™!)
Oscillator 1 wPl 1200
ml 0.00
Yl 15.00
Oscillator 2 sz 1300
w2 120
Yo 120
. 3
Oscillator 3 wP3 6 x 10
Wy 4 x 103
Y3 7.5 x 103
Oscillator 4 Wp g 110 x 103
3
w4 98 x 10
9 25 x 103
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Based on that consideration, a connecting curve has been
drawn between the two n curves from A ~ 0.15 um to 0.21 um.
From this combination of optical method results and elec-
tron energy-loss measurements, a set of n and k data for

E / C has been put together from A ~ 0.025 ym to 100 pm.
(See Figs. 3.10 and 3.11 and Appendix A.)

For the E// C direction of graphite, the reflectance
computed from n and k extracted from the literature has been
fitted using a Drude-~Lorentz oscillator model; the result
is shown in Fig. 3.12. The oscillator parameters used are

presented in Table 3.4.

Glassy Carbon

Glassy carbon, also known as vitreous carbon, is
produced by the slow pyrolysis of polymers such as cellusen
and aromatic resins. It looks like black glass, has a low
density (1.4-1.5 g/cm®) and also a low porosity and perme-
ability to water. It has about the same hardness as glass;
it withstands high temperature in absence of oxygen. X-ray
studies have shown that glassy carbon has randomly oriented
crystals which are not very much altered by heat treatment.
At 3273°K, glassy carbon crystallite size is 6 mm; they are
smaller at lower temperatures (Halpin and Jenkins, 1969).

Taft and Philipp (1965) published near normal inci-
dence reflectance data of glassy carbon up to 26 eV.

Williams and Arakawa (1972) published plots of n and k
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function of the E / C polarization of graphite.

As computed with the use of the adjusted
optical constants of Fig. 3.10.
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Table 3.4. Oscillator parameters for the fit of the reflec-
tance curve for the E / C direction of graphite.

Parameter Value (cm™!)
Oscillator 1 mPl 8500
wy 0.00
Yy 900
Oscillator 2 Wpo 2950
mz 1500
Yo ' 1500
Oscillator 3 Wps 5,000
m3 25,000
Y3 3,000
Oscillator 4 W5y 95,000
W, 75,000
Yy 25,000
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of glassy carbon from 0 to 82 eV, but it is practically
impossible to obtain any detailed information below about
0.2 eV. It was therefore necessary to complete the avail-
able information.

In this study, optical constants based on the
analysis of reflectance measurements extending to 225 um
and a Drude fit to reflectance extending to 1000 um have
been derived. The instruments used in the experiment, along
with the near normal reflectance measurements will be pre-

sented; then tbe data analysis will be discussed.

Instrumentation and Measurements

Spectrophotometers to which suitable reflectometers
(Steyer, 1974) have been attached were used for the measure-
ments. A Cary 14 was used in the visible and in the near
IR, a Perkin Elmer 398 in the IR, and a Beckman IR 11 for
the far IR (see Table 3.5).

The Cary 14 and the Perkin Elmer 398 were used in
a double beam mode, and the Beckman 11 in a single beam
mode. The Beckman 11 was modified to use a liquid He
cooled, doped germanium bolometer as a detector. The signal
obtained was amplified by a PAR model 28 lock-in amplifier
and then sent to a digital voltmeter or chart recorder
(Rathmann, 1981).

The reflectometers were designed to give a near

normal incidence reflectance. The one used on the Cary 14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



49

Table 3.5. Spectral region and instrument.
From Rathmann (1981).
Wavelength Spectral
Region (Frequency) Instrument Resolution
Far IR 250 ym - 20 um Beckman IR 11 ~v 5 cm
(40 - 500 cm—1)
Mid IR 25 ym - 2.5 um Perkin Elmer 398 v 5 com
(400 - 4000 cm~!)
Near IR

2 ym - 0.33 um Cary 14 ~ 10 R

to Visible (5000 - 3.3 x 10* cm?)
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and the Perkin Elmer 398 is built by Barnes Engineering
Company; the far IR one was designed and built in our lab.

An aluminized glass reference was used. Good
alignment was always checked before any measurement; the
aluminum standard or the sample was positioned and the
mirrors of the reflectometer rotated until a maximum signal
was obtained.

The measurement procedure was as follows:

1. Run the 100% reflectance line, say RlOO' with

the aluminum standard in place.

2. Run the zero reflectance line, say RO' without

any sample.

3. Run the reflectance of a well-polished sample,

say RS.
From the spectrum obtained, it is easy to find:

Rg~Rp

R' () §IEB:3§;

where R'(A) is a relative reflectance; this data can be
used in the Kramers-Kronig analysis computer program where
it is converted into an absolute reflectance.

Reflectance from A ~ 0.35 um up to 220 um has been
measured and good agreement obtained with Arakawa's pub-
lished results in the 0.3 um to 2.5 um wavelength range

which the experiments have in common. It was thus not
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necessary to pursue measurements toward wavelengths shorter

than 0.35 uym.

Data Analysis and Results

For use in the Kramers-Kronig analysis, reflectance
was extended toward long wavelengths by curve fitting. Free
electron behavior was assumed for glassy carbon at larger
wavelengths than the last experimental point, and the Drude
model used in the fitting. The parameters used were:
wp = 2000 cm™!; mj(l) =0, and y = 900 cm~!. Reflectance
data going from A v 0.02 um to about 10° um were constructed
by combining Williams and Arakawa's (1972) results, experi-
mental results of this study, and extrapolated results, for
use in the Kramers-Kronig analysis (see Fig. 3.4). The
results of the analysis are presented in Figs. 3.13 to 3.15
and in Appendix A.

We then proceed to use the Drude-~Lorentz model and
fit the reflectance data obtained for the Kramers-Kronig
study; the result is shown in Fig. 3.16, and the parameters

used are presented in Table 3.6.

Discussion of Results

The reflectance data for graphite in the EL C
orientation and that of.glassy carbon have been analyzed
by the Kramers-Kronig method and by fitting a Drude-Lorentz
model to the reflectance curves. The reflectance data for

graphite in the E / C orientation has only been fitted
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Oscillator fit of the reflectance of glassy carbon.

3.16.

Fig.
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Table 3.6. Oscillator parameters for the fit of the reflec-
tance curve of glassy carbon.

Parameter Value (cm~!)
Oscillator 1 Wpy 4000
Wy 0.00
Yy 1000
Oscillator Wpo 14.5 x 10°
w, 5 x 10°
Yy 9 x 10°
Oscillator Wpq 50 x 10°
W, 30 x 10°
Y, 43 x 10°
Oscillator Wp, 120 x 10°3
w, 110 x 10°
Yy 60 x 10°
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because the spectral range of the data was not large enough

to allow the use of the Kramers-Kronig method.

In all the fits, the oscillator strength parameters
(wéj) have been checked against the sum rule (see Kittel,

1976, p. 351 and Wooten, 1972, p. 72):

I we, (w) do = Z méj = X nw; . (41)
o J

The plasma fregquency wp is given by (see Kittel,
1976, p. 289):

P = ——;;_“ ’ (42)

where n is the density of electrons, e and m the charge and

the mass of an electron in c.g.s. units. With the assumption

that all the four valence electrons of carbon determine Wp

one obtains:

kn m; ~ 20.3 x 1032 sec™?

The value of } wéj for each case is given in Table 3.7.

In each of the three cases

2 2
) wpy < MW ow .
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Table 3.7. Values of ) w?

J Py -
Material ) “’1§j (sec—?)
J
Graphite: EL1 C " 4.4 x 1032
Graphite: E jJ C n 3.3 x 1032
Glassy carbon v 6.2 x 103%%
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This result is expected, since the maximum possible value
for n has been chosen for substitution in Eq. (42). Some
valence electrons might be sufficiently bound that the sum
rule (Eq. 41) is not satisfied over the frequency range of
the experiment.

The discrepancy between the experimental and fitted
curves observed between A = 0.3 and 15 um on Fig. 3.8 is
due to interband transitions which come into play with in-
creasing energy. These transitions gradually increase the
reflectance without showing sharp peaks. The Lorentz model
used for the fit cannot account well for this phenomenon.
The fit of the peak at A "v45 um resulted in the sharp drop
in the calculated reflectance.

The band structure of graphite as calculated by
Mallett (198l1) shows narrow band gaps at A = 0.08 and 0.25
um, which account for direct interband transitions, respon-
sible for the sharp peaks observed at those wavelengths.
These peaks were easily fitted.

Examination of Figs. 3.12 and 3.16 shows that to
some extent, the reflectance of the E / C polarization for
graphite and that of glassy carbon have the same behavior
as the reflectance of the E L C orientation for graphite.
This behavior makes the fit difficult between A = 0.3 and
15 um, but the difference between the experimental reflec-
tance and the fit is unimportant because of the low

reflectance of the materials considered.
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Results obtained by the two methods of analysis for
glassy carbon are compared in Table 3.8 for several wave-
lengths.

Comparing this Kramers-Kronig analysis with pub-
lished data, one finds that for the E C orientation of
graphite, the optical constants derived agree well with
those of Taft and Philipp (1965) (see Table 3.9) and Green-
away et al. (1969). At the peak around A ~ 0.088 um, our
value of 9.3 for €, is higher than that of Taft and Phil-
ipp's (1965) value of ~ 7.0. The difference is due to the
values of the parameters used in the short wavelength
extrapolations for the Kramers-Kronig analysis‘(see p. 34).

The optical constants obtained for the E C orien-
tation of graphite are to our knowledge the only consistent
ones available at this writing.

The glassy carbon optical constants agree well with
Williams and Arakawa's (1972) results and extend them beyond
A n 10 ym. Differences exist between our results and those
published for varouis amporphous carbons as one can readily
see in Fig. 3.1l. One exception is the result of Pluchino
et al. (1980) (see Fig. 3.15). The good agreement in this
case is worth pointing out, even though the comparison is
possible for one wavelength only. Our reflectance measure-
ments were performed on a homogeneous bulk of glassy carbon
sample. Pluchino et al. measured the scattered radiation

by a single particle, small enough to be homogeneous. It is
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Table 3.8. Results for index n and k obtained by the

RKramers-Kronig method and by oscillator fit,

in the case of glassy carbon. :

The indices "OF" and "KK" stand for "Oscillator

Fit" and "Kramers-Kronig," respectively.

Wavelength (um)

0.08 0.15 0.25 1.00 5.00 10.00 100.00
nop 1.03 1.46 1.40 1.95 2.97 2.88 5.91
Nex 1.04 1.54 1.40 2.15 3.04 3.56 6.09
kOF 0.91 0.38 0.56 0.70 1.15 1.91 5.26
kKK 0.95 0.19 0.74 0.90 1.03 1.54 4.85
Table 3.9. n and k from this work and those of Taft and

Phillip (1965) and Philipp (1977) at the same

wavelengths.

Wavelength (um)
.1 .4 .5 .62 1.77 2 5 50

This work
n 2.5 2,62 2.61 2.7 3.68 3.8 5.2 16
k 0.8 1.28 1.33 1.4 2.4 2.5 3.8 22
Taft and Philipp (1965)
and Philipp (1977)
n 2.4 2.52 2.54 2.6 3.78 3.9 5.1 15.8
k 0.75 1.35 1.36 1.46 2.49 2.6 4.0 22,8
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strongly believed that the agreement of our results is due
to the homogeneity of the materials on which the experiments
were performed. To find optical constants of particles,
many workers analyze reflectance data of particles pressed
into pellets. Results obtained by this technique are rarely
in good agreement for different samples. Chylek et al.
(1981) argued that the differences are essentially due to
the differing mass concentration of the particles. One
reason we have chosen graphite and glassy carbon is because

these materials are relatively homogeneous.
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CHAPTER 4

SMALL PARTICLE EXTINCTION

This chapter deals with the extinction of small

carbon particles. The production of the particles and

their characterization are presented, and the sample

preparation for the extinction measurements shown. Then

the measurements leading to the mass calibration and to

the extinction are described. Finally, results are pre-

sented and discussed.

Particle Production and Characterization

Graphite and three other types of carbon have been

investigated. These powders are:

l-
2-

3.

very fine graphite (Ashbury #250, Dixon),
standard lampblack,

particles (for solar energy absorption) produced
by Hunt (1979) by acetylene pyrolysis at the
Lawrence Berkeley Laboratory; those particles
are referred to in this work as "LBL Smoke",
particles were made by evaporating carbon in an

inert gas atmosphere.

The chamber in which these particles were made was

evacuated to 2 x 10" torr with an oil diffusion pump. The

63
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system was then purged with helium to reduce the partial
pressure of oxygen, and reevacuated. Finally the chamber,
isolated from the pumping system, was filled with helium,
and an arc was struck between carbon electrodes (glassy
carbon). The particles were collected on appropriate sub-
strates.

The‘ﬁarticles were observed with a "Scanning Elec-
tron Microscope" (SEM) and/or a "Transmission Electron Micro-
scope" (TEM). PFor this purpose a small amount of "LBL
Smoke," lampblack, or graphite powder was addedvto methane
and the mixture dispersed ultrasonically. The cloudy liquid
was then put in a syringe adapted to a Nucleopore membrane
filter holder and filtered. The filter retained the indi-
vidual particles with diameter larger than its pores and
also chain-like aggregates of particles. Samples prepared
with this technique were observed with the SEM. Results
shown in Figs. 4.1 and 4.2 confirmed what is commongly
observed: spherical shape for most carbon and plate-like
shape for graphite (Walker, 1963). The nucleopores used had
0.25 ym diameter pores. Many of the particles presumably
had smaller diameter than 0.25 um.

Smoke made by arc evaporation of bulk glassy carbon
was collected directly on grids for observation with TEM.
Results showed that in this case, too, the particles are
rather spherical, although not as perfect as observed for

other particles (see Fig. 4.3). The heat generated by
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Fig. 4.1. Scanning electron microscope view of two types
of graphite particles.,
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Lomplock particles

Fig. 4.2. Scanning electron microscope view of "LBL smoke"
particles and lampblack particles.
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Glassy Carbon particles

Fig. 4.3. Transmission electron microscope view of glassy
carbon with magnification 250KX.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



68
electrons striking tﬁe samples during the observation pro-
cess is probably responsible for the ragged edges (Walker,
1963).

X-ray powder patterns and electron diffraction pat-
terns observed in the transmission electron microscope
showed diffuse bands with little distinction between "LBL
smoke," lampblack, and glassy carbon smoke. In contrast,
the graphite showed distinct diffraction patterns. It was
concluded that the first three are mainly amorphous while

the graphite is highly crystalline.

Sample Preparation

The transmission measurements from which the extinc-
tion was determined required suspension of the particle in
one way or another. When they were collected on a usable
substrate such as gquartz or LiF, no further sample prepara-
tion was necessary; otherwise, special particle suspension
techniques had to be used.

-For extinction measurements from the visible to the
mid IR, the KBr pellet technique was used. A small amount
of the particulates (typically 50 to 200 ug) was mixed with
0.5 mg of IR quality of KBr in a vial that contained a small
steel ball. The mixture was first hand shaken and then
shaken for 5 to 10 minutes on a "Wig-L-Bug" dental amalga-
mator. The mixture was then transferred to an evacuable

die connected to a vacuum-pumping system and placed on a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



69
hydraulic press. After evacuating for about two minutes,
pressure was applied and slowly increased up to about
2000 1lbs per square inch. The vacuum was maintained for two
more minutes, then released, as air was slowly admitted to
the system. Finally, the pellet was carefully extracted.

For the far IR extinction measurements, polyethylene
powder was used as the dispersion medium; 0.1 mg of poly-
ethylene was used in each vial. In this case, shaking a
vial caused the mixture to stick to its wall because of
electrostatic forces. To circumvent this problem, acetone
was added to the mixture. The vial was hand shaken, slight-
ly warmed, and left open overnight to allow the acetone to
evaporate. The mixture was then scraped off the container
walls and transferred to the KBr die. The die was heated
on a hot plate during its evacuation. A gentle hand pres-
sure was exerted on the plunger of the die at the beginning
of the heating. Still under evacuation, the die was removed
from the hot plate and slowly cooled. The pellet was then
carefully removed, with the help of a razor blade, and
weighed. If m, is the mass of the polyethylene, m, the
mass of the particles with which the sample preparation was
started, and m; the mass of the pellet obtained, then:

m,
mo= N )

1

is approximately the mass of particles in the pellet.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



70

Measurements

The instrumentsused to acquire data have been
described earlier (see Chapter 3). With the Cary 14, a
zero-absorption trace was recorded with two identical sample
‘holders in the two beams. The sample was then inserted in
the front beam and a reference blank was placed in the back
beam. The spectrophotometer recorded the optical density
(OD) as a function of the wavelength. The measuring tech-
nique on the Perkin Elmer was the same as on the Cary 14,
except that the zero and the 100% lines had to be recorded.
The spectra obtained gave intensities which permitted the
calculation of the transmission.

The Beckman 11 was used in a one-beam mode. The
transmission through the sample and the reference blank was
measured separately. The absorption of the particles was
found from the ratio of the two transmissions. The calcula-
tions of volume-normalized extinction (o) requires knowledge
of the mass density o (mass/area) of the particles. For the
pellets used in IR, the mass of particles suspended in a
matrix was large enough for weighing with an analytical
balance. 1In the UV, the absorption of carbon particles is
so high that a very small quantity of particles must be
used to get any transmission. In that case, it was prac-
tically impossible to weight the particles; an optical

calibration method was used to find o.
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A sufficient quantity of carbon smoke was collected
on glass slides and the optical densities (0D) measured
in the visible. Each slide was weighed with and without
the smoke. Knowing the mass m of the particles on a slide,
and the area A of the substrate, ¢ = m/A was computed.
Optical density was plotted as a function of ¢ for several
samples of varying thickness, as shown in Fig. 4.4. The
curve shows a leveling off of OD with increasing o, presum-
ably due to the increasing effect of multiple scattering.
In order to avoid the multiple scattering region, the slope
of the linear curve at small o is used to determine a cali-
bration constant (0OD/c) at each wavelength. This calibra-
tion can then be used to determine mass densities from
optical transmission measurements for samples that are too
light for conventional weighing techniques. By calibrating
the mass density in the near infrared and the visible,
optical measurements on very light samples (i.e., 5 ug/cm?)

can be extended into the highly absorbing regions of the UV.

Results and Discussion

In this section, results of extinction measurements
on graphite and amorphous carbon are presented and discussed
with respect both to calculations and to other workers'
results. This is done first for A > 0.4 um and then for

A2 0.4 ym.
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In Fig. 4.5 are plotted the extinction results from
graphite powders (Ashbury micro #250, Dixon HPN-2). On the
same figure are plotted two sets of calculations, one based
on a continuous distribution of spheres (CS) theory and the
other on a continuous distribution of ellipsoids (CDE).

Although some workers afgued that bulk optical
properties may not be appropriate for micron-sized particles
(Pluchino et al., 1980), the calculations were done using
optical constants derived in Chapter 3, with the assumption
that the particles are large enough for bulk optical prop-
erties to be applicable. A discussion of this point can be
found in the review by Huffman (1977, pp. 212-215).

A comparison of the two calculated results shows a
substantial difference in strength of the extinction in the
infrared region from about A ~ 1.0 pm to 100 pym. This pro-
vides a quantitative illustration of how shape affects

extinction of carbon particles in the infrared.

Visible and Infrared Range

Most of our studies on graphite were done on the
Ashbury powder, which was available in large enough quanti-
ties to permit the preparation of many samples. Therefore,
the discussion of graphite experimental results will be
based on the Ashbury sample only.

Three sets of results'were obtained (see Fig. 4.5).

From A v 0.4 pm to 25 um, extinction of particles in KBr

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



74

6
10 LSS L B ] L) | LI L§ L R AL L} |

C%

10°

(o]
(o]
(o]
®
@
[>l>
>
y 1239l

o] ° o
- § OO AA
‘g i @G ooo A ]
~ &
104 e 0 °° AA -
- X 00 A :
S C oo A ]
K= [ ® o° .
= A A -
8 ° A
© ® © A -
S e°° L i
g b A
S 103 & ocDE . . -
- Calculations for Graphite .
. A o Dixon HP-2 Graphite in KBr .

>

Measured{° Ashbury Graphite in KBr
® Ashbury Graphite in Polyethylene

v %D

102111111 1 2 1y 20 8 1 8 1 3 Fegas v 3 1 2 N

10 1 0l
Wavelength (pm)

Fig. 4.5. Experimental extinction for graphite, compared
to sphere theory (CS) and to CDE theory.
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and extinction of particles in polyethylene are shown;
above X v 25 pm, extinction of particles in polyethylene
only is presented. The polyethylene sample used from

0.4 ym to 25 um was obtained from a pellet made by the
technique described in the section on sample preparation,
then thinned by exerting a slight pressure on the pellet
placed between two microscope slides and heated. Comparison
of the two results in the X &~ 0.4 pm to 25 ym range shows
differences which are due to the suspension media used.

On the one hand, the carbon particles mixed well with the
KBr powder during the vial shaking process; on the other,
the polyehtylene and the particles stick to the wall of the
vial when shaken, as previously explained.

The observed disagreement of theory and experiment
is most likely due to the inappropriateness of the ellip-
soid theory. Figure 4.1 provides evidence that the graphite
particles are in fact plate-like particles.

The particle shape is probably responsible for the
violation of the sum rule shown in Egq. (40). Indeed, in a

very restricted wavelength range (i.e., 5 um to 50 um),

S aodAx = 65 ’

exceeding the maximum value which is 30.
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Although this investigation was not planned as an
illustration of the "shape effect," the comparison of exper-
imental results to one another and to calculations has
clearly shown the importance of the shape effect in extinc-
tions.

Extinction of "LBL smoke" and lampblack was also
investigated. Experimental results and calculations based
on the same theories as for graphite are plotted in Fig.
4.6. Optical constants derived in Chapter 3 for glassy
carbon have been used in the calculation. Extinction of
fresh "LBL smoke" from A v 0.6 um to 15 um is pratically
the same as predicted by the sphere calculations. This is
not surprising since Fig. 4.2 shows agglomerated spheres.
These chains and clusters were probably dispersed in the
shaking process.

Pellets made of "LBL smoke" were measured fresh
and also two years later; they gave almost exactly the same
results as new pellets made of two year old "LBL smoke."
Because of the old pellet results, the increase in "LBL
smoke" extinction has been assigned to a change in the
optical constants of the particles, rather than to the
shape effect. The nature of this change is not yet well
understood; a graphitization hypothesis has been discounted
because x-ray studies of the two-year-old particles did not

show any sharp lines.
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Figure. 4.7 shows that the lampblack extinction is
higher than the highest "LBL smoke" extinction. The lamp-
black powder used might have experienced the same aging
process as the "LBL smoke" and the difference in extinction
might be due to a difference in the ages of the particles.

Koike, Hosegawa, and Manabe (1980) measured the
extinction of arc evaporated graphite particles and parti-
cles produced by burning benzene and xylene in air. The
measurements were performed from A v~ 0.21 um to 340 um on
samples prepared with the same techniques as ours. They
found humps between A ~» 5 uym and 15 um (Koike et al., 1980).
Our data confirmed the presence of these humps (see Figs.
4.5 and 4.6). Koike et al. also found a peak near X ~ 90 um.
Neither the data of Biea et al. (1970) nor ours shows this
peak. A broad peak found in our calculated result is located
around A & 35 um and is more apparent in the sphere calcula-
tions than in the CDE case (see Fig. 4.5).

Blea et al. (1970) measured absorption coefficients
of black polyethylene over a broad spectral range (A ~ 2.5
um to 3,300 um)., Although their scattered results were
assigned to differences in grain size, mass concentration
of carbon in polyethylene, and to the form of the carbon,
our extinction results from one type of carbon to another
are due to differences in the shapes of the particles.

~Table 4.1 shows experimental results of this study

and those of other workers at some specific wavelengths.
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Ultraviolet Range
For short wavelengths the Rayleigh approximation,
on which the sphere and CDE calculations are based, is
hardly valid. A switch to Mie calculations is then neces-
sary. Although the particles are not individual spheres or
spherical at all (graphite), the calculations can give a
rough basis for the evaluation of the experimental results.
Experimental results and calculations are shown in
Figs. 4.8 and 4.9 for Ashbury graphite and glassy carbon,
respectively. It might be surprising that the glassy carbon
extinction peak is higher than the graphite one. It has been

shown (Rathmann, 198l; Foxvog and Roessler, 1978) that the

~

extinction out of the Rayleigh limit range is radius depen-
dent, apd that very fine particles have a higher peak. The
graphite used was acquired as a finished powder with rather
large particle sizes. The glassy carbon particles were arc-
evaporated in helium atmosphere, a technique known for pro-
ducing very fine particles (Rathmann, 1981). Also the
particles were lightly deposited on the substrate to limit
their agglomeration.

The graphite particles might obey some kind of sum
rule by which the loss of strength in extinction observed
between A = 0.22 pm and 0.24 um is compensated by the high
extinction in the infrared region.

The strength of the experimentally found peak for

glassy carbon is rather close to the peak calculated by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10' 1 I T 1 T T ]
©CDE Calc. for Glassy Carbon
- aMie Calc. for Glassy Carbon
(radius =0.02 pm)
8- A Measurements for Glassy Carbon-
S
s
s 6 7
5
s I 7]
3
(& 4 = -
5
5 | _
&
2 L -
A
O 1 1 X | 1 1 1 ]
0.2 03 04 05

Wavelength ( um)

Fig. 4.8. Comparison of experimental extinction to calcu-
lated extinctions for glassy carbon around
AN 0.22 ym.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82



83

10— l l I ' T T l
OoCDE Calc. for Graphite
= AMie Calc. for Graphite -
(radius =0.02 pm)
gt e Measurements for Graphite
(Ashbury # 250)
e A Measurements for Glassy Carbon
e
L 6 -
(-}
s | __
2
D
. S 4 _
S
g L i
&
2 = —
0 ] l 1 | 1 | ] |

Wavelength (pm)

Fig. 4.9. Comparison of experimental extinctions for
graphite and glassy carbon to calculated extinc-
tions for graphite around A ~v 0.22 um.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



84
by the Mie method for graphite (see Fig. 4.9). Although it

is known that glassy carbon cannot be significantly altered
by heat treatment (Halpin and Jenkins, 1969), the strength
of the peak is a good basis for arguing that the particles

have graphitized in their production process.
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CHAPTER 5
SUMMARY AND CONCLUSION

Reflectance data for graphite for the E L C orienta-
tion and for glassy carbon wsre compiled from the literature
and augmented by our own measurements and/or extrapolations.
They were analyzed by the use of the Kramers-Kronig method
to yield consistent optical constants over a wide spectral
range. For glassy carbon, our results are, at this writing,
the only ones available beyond X ~ 10 um.

It was also shown that the homogeneity of the
material on which measurements (reflectance, extinction,
etc.) are performed is an important factor in obtaining
dependable results.

Optical constants obtained for graphite for the
E // C orientation by optical and by electron energy-loss
methods over a broad (0.05 to 100 um) spectral range have
been combined to give more realistic results than could
be provided by each method separately.

Fitting the reflectance data of graphite and
glassy carbon to a Drude-Lorentz model was complicated by

. the existence of interband transitions which increase the
reflectance without showing sharp peaks. But except for

85
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the case of the E L C polarization of graphite, the differ-
ence between experiment and fit was unimportant because of
low reflectances; good results were thus obtained with this
method over the spectral range.

Differences exist between experimental and calcu-
lated extinctions by small carbon particles. High experi-
mentally observed extinctions are either due to a shape
effect as observed with graphite, or to an aging process
as noticed with the other types of carbon partiéles. The
preparation of small particles by arc evaporation of bulk
glassy carbon tends to graphitize the particles, thus en-
hancing the extinction. This effect was observed around
A v 0.22 um for particles which were nominally glassy
carbon (see Fig. 4.9).

The poor agreement between experiment and calcula-
tions leads to the conclusion that current models are not
adequate for predicting extinctions by small carbon parti-
cles over a large spectral range. However, the empirical
results provided by this work should be useful in designing
projects like the solar energy collector conceived by
Hunt (1979).

More experimental work should be done in order to
reconcile the optical constants for graphite for the E/ C
orientation, as measured by optical and electron energy-

loss techniques. The aging process and the graphitization
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of the particles observed in this work need to be studied
further and quantified.

Progress in reconciling experimental and theoretical
extinctions by small carbon particles will probably depend
on how well changes in the particles are understood and
incorporated in calculations; it will also depend on the
existence of theories which can properly deal with the shape

of the particles.
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OF GRAPHITE AND GLASSY CARBON
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Table A.l. Optical constants of graphite for the E L C

polarization.

A (um) N K A (um) N K
0.050 D361 0.313 1.200 3.180 2.000
0.055 0.390 0e543 1.500 3.430 2.180
0.060 0.400 0.850 1.800 3,700 2.430
0.065 0.500 1.150 2.000 3.830 24520
0.070 0.650 1.330 24500 4:.300 2.750
0.075 0.850 1.700 3.000 4,300 2950
0.080 1. GO0 2.000 3.500 4.480 34330
0,085 1,900 20450 4,000 4,730 3550
0.090 2.600 1.650 4.500 2.030 3.730
0.095 24630 1.350 5000 3230 3.830
0,100 24400 0.900 64000 54400 4,030
0.110 24150 0.500 7.000 5400 44450
0.120 1.900 0.130 8.000 2.700 4.950
0.125 1.700 0.100 9.000 54950 54250
0.140 1.470 0.130 10.000 6.100 54550
0.150 1.100 0,160 12.000 64140 6850
Q.160 D980 0.280 15,000 6.250 3.000
0.180 Q.830 04650 18,000 64550 9.000
0,200 0.800 1.200 20,000 6.750 11,000
0.220 D.850 2000 25.000 7500 13,000
0+240 1.200 24400 30,000 3.500 15.500
0.250 1,600 24450 35,000 10,000 18,500
0260 2+100 24650 40,000 11.500 20500
0.270 24550 24450 50,000 16500 234500
0.300 24700 1.700 60,000 20.700 22,000
0.350 24620 1.360 70,000 22,500 19,300
0,400 24610 1.240 83.000 21.500 18.900
0.450 24600 1.250 90.000 20.000 18.800
0.500 2.600 1.370 100.000 13.300 21.300
0.600 2,700 1350

0.700 24750 1.480

0000 2.850 1.630

0.900 24920 1.740

1.000 3200 1,600
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Table A.2. Optical constants of graphite for the E / C

polarization.

A (pm) N K A (um) N K

o 1.200 1.400 0.100
g:ggg g:ggg 81233 1.500 1.400 0.100
0.060 0.850 0.480 1.800 1.470 0.100
0.C65 0.800 0.600 2000 1.500 0100
0.070 0.790 0.760 2500 1.600 0.150
0.075 0.833 0633 3,000 1.730 Vel1l50
0.080 0.940 04950 3.500 1.860 0.150

= 4.000 1900 06150
8:833 2:928 i:ggo 4,500 2,060 04150
0095 1,150 1,450 5000 2200 0.150
0,100 1.300 1,600 6.000 2350 0150
0.110 20200 1.900 7,000 24410 0.150
0,120 2.700 1400 8,000 2400 0.150
0.125 2.800 1,000 9.000 2398 0.150
0.140 2.550 0.450 10.000 24336 0.150
0.150 2.230 94250 12.000 26330 04170
0.160 2.100 0.190 15,000 24250 0.200
0.180 1600 0,130 18.000 2150 0.270
0,200 1220 0.15) 20.000 2.050 0350
06220 1.100 0,200 25.000 1.930 0.580
0.240 06990 0.120 30.000 1,920 0.850
0.290 1,000 0240 35.000 2000 1,070
06260 L.050 0.230 40.000 2.080 1.240
0.270 1.120 0.100 50,000 2200 16630
0350 1.370 0,100 70,000 24430 24150
0.400 1,400 0.100 80.000 24540 24400
0,450 1.370 0.100 90.000 2¢630 24550
04500 1.330 0.100 100.000 2.700 2.700
0.600 1,300 0,100
0.700 1300 0.100
0,800 1.300 0.100
0.900 1.300 J.100
1.000 1350 0.100
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