INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted.

The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction.

- 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity.
- 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame.
- 3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of "sectioning" the material has been followed. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again—beginning below the first row and continuing on until complete.
- 4. For illustrations that cannot be satisfactorily reproduced by xerographic means, photographic prints can be purchased at additional cost and inserted into your xerographic copy. These prints are available upon request from the Dissertations Customer Services Department.
- 5. Some pages in any document may have indistinct print. In all cases the best available copy has been filmed.

300 N. Zeeb Road Ann Arbor, MI 48106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

**

8315282

Edoh, Otto

.

.

OPTICAL PROPERTIES OF CARBON FROM THE FAR INFRARED TO THE FAR ULTRAVIOLET

The University of Arizona

Рн.Д. 1983

University Microfilms International 300 N. Zeeb Road, Ann Arbor, MI 48106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.

PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark $\sqrt{}$.

1.	Glossy photographs or pages_	1
		<u> </u>

- 2. Colored illustrations, paper or print
- 3. Photographs with dark background
- 4. Illustrations are poor copy
- 5. Pages with black marks, not original copy_____
- 6. Print shows through as there is text on both sides of page_____
- 7. Indistinct, broken or small print on several pages
- 8. Print exceeds margin requirements
- 9. Tightly bound copy with print lost in spine _____
- 10. Computer printout pages with indistinct print _____
- 11. Page(s) ______ lacking when material received, and not available from school or author.
- 12. Page(s) ______ seem to be missing in numbering only as text follows.
- 13. Two pages numbered _____. Text follows.
- 14. Curling and wrinkled pages _____
- 15. Other_____

University Microfilms International

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-.

OPTICAL PROPERTIES OF CARBON FROM THE FAR INFRARED TO THE FAR ULTRAVIOLET

by

Otto Edoh

.

A Dissertation Submitted to the Faculty of the DEPARTMENT OF PHYSICS In Partial Fulfillment of the Requirements For the Degree of

DOCTOR OF PHILOSOPHY

In the Graduate College

THE UNIVERSITY OF ARIZONA

1,983

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE

As members	s of the Final Examination Co	mmittee, we certify that we have read
the disser	tation prepared byOtto 1	Edoh
entitled	Optical Properties of	Carbon from the Far Infrared
_	to the F	ar Ultraviolet
-	······································	
-		
-		
and recomm		ulfilling the dissertation requirement
for the De	egree of Doctor	of Philosophy
Holm	W Rober	Mar 24, 1983
Kel	This thick	Date 24 Mar. 1983 Date
Ain	Men	Date 21 Mar 1983
M	Vonglin c	Date 24 March 1983
Ro	Lay	Date 24 Neuch 198
	\square	Date

Final approval and acceptance of this dissertation is contingent upon the candidate's submission of the final copy of the dissertation to the Graduate College.

I hereby certify that I have read this dissertation prepared under my direction and recommend that it be accepted as fulfilling the dissertation requirement.

anald R. Nuffmen 24 Mench 1983 Dissertation Director

In memory of my father, the Rev. Goka H. Edoh, who made many sacrifices for the education of his children.

And to my mother, Naokemi B. Edoh, whose loving care for her children has never failed.

•

iii

STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library.

Brief quotations from this dissertation are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his judgment the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author.

Adur SIGNED:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENTS

I would like to express my deep gratitude to Dr. Donald R. Huffman, my advisor, who led me with patience and competence to the successful completion of this dissertation. With exceptional skill at motivating students, Dr. Huffman has often refueled my enthusiasm for my research which sometimes seemed hopeless. My debt to him is huge.

Dr. Arlon J. Hunt, of the Lawrence Berkeley Laboratory, allowed me to take my research topic from one of his projects. He provided me with carbon particle samples and constantly shared information with me. I also spent one month working in his laboratory. For all this and for prospects of future collaboration, I am grateful.

My appreciation goes to the members of my examination committee: Dr. Douglas J. Donahue, Dr. Chiang Ke Hsieh, and Dr. John W. Robson. Special thanks are due to Dr. John O. Kessler and to Dr. Richard A. Young, whose generous help during the last part of this work made it possible for me to finish my degree sooner than I could have without them.

Dr. John O. Stoner kindly provided me with carbon foil samples with which I started my research. Dr. Bruce R. Barrett and Dr. Michael D. Scadron have shown a constant friendship for which I am grateful. The list would be too

iv

long to name the many people who have helped in one way or another. The faculty, the staff, in brief, the Department of Physics as a whole, has been very supportive and made me feel at home.

Many former graduate students, now respected Ph.D.'s, and fellow graduate students have been instrumental in the successful completion of my graduate studies. Lin Oliver and Kent Pflibsen of our laboratory helped in many ways; their collaboration is appreciated very much. Special thanks are due to Dr. Jan Rathmann who coached me at the laboratory and to whom I channeled the "dumb" questions I did not want to ask my advisor. As Lin put it, "What can we do without Jan?"

Dr. Dan Morrison and Dr. Niranjan Sandesara helped me through the early stages of my graduate work. The friendship of Dr. Peter Rathmann, Dr. Ralph Ballard, Dr. Randy Bos, Keith Krueger, and Fouad Jalbout has been most beneficial.

I am indebted to my wife's parents, Afiavi and Atone Abalo, and to her brothers, for their understanding and for the support they gave my wife and children before they joined me in Tucson. Thanks are also due to my brothers and sisters for their encouragement and especially to Pierre Koffi Edoh, M.D., for his financial support.

Henri and Nadia have spent many evenings and weekends without their "daddy." Melissa appeared in time to brighten

v

the dark side of writing my dissertation. For your contribution, "Papa" says thanks.

My wife, Malalasoa, has lived through the frustrations of graduate studies with me. For her patience, her encouragement, and her support, I owe her my deepest gratitude. Thanks, Malala, for helping me through.

Barbara Bickel's help was invaluable in preparing this manuscript.

The sponsorship and the financial support of the African American Institute and of the government of my country (Togo, West Africa) is gratefully acknowledged.

This work was supported in part by a grant from the Department of the Army.

vì

TABLE OF CONTENTS

- -

		Page
	LIST OF ILLUSTRATIONS	ix
	LIST OF TABLES	xi
	ABSTRACT	xii
1.	INTRODUCTION	1
2.	REVIEW OF CONCEPTS AND DEFINITIONS	4
	Complex Index of Refraction; Relation to the	
	Complex Dielectric Constant	4
	Dispersion Relations	6
	Classical Dispersion Relations	6
	Kramers-Kronig Relations	7
		11
	Extinction by Small Particles	
	Introduction to Mie Theory	11
	The Shape Distribution	17
	The Shape Distribution	20
з.	BULK OPTICAL CONSTANTS	22
	Techniques for Measuring Optical Constants	25
		27
	Graphite	
	Survey of Optical Constants of Graphite	29
	This Study's Investigation on Graphite	34
	Glassy Carbon	43
	Instrumentation and Measurements	48
	Data Analysis and Results	51
	Discussion of Results	
	Discussion of Results	
4.	SMALL PARTICLE EXTINCTION	. 63
	Particle Production and Characterization	63
	Sample Preparation	68
	Measurements	70
		71
	Results and Discussion	
	Visible and Infrared Range	. 73
	Ultraviolet Range	. 81
5.	SUMMARY AND CONCLUSIONS	. 85

vii

TABLE OF CONTENTS--Continued

Page

-

APPENDIX	-																	88	
]	FOR	GRAPI	11.1	ĽΕ	AN	D	GL	AS	SY	CAI	RBC	SN	•	•	•	•	88	•
SELECTED	BIBL	IOGF	APHY	•	•	•	•	•	•		-			•	•	•	•	97	ł

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

•

.

viii

LIST OF ILLUSTRATIONS

Figure		Page
2.1.	Absorption and scattering cross sections normalized per unit volume of solid for carbon in the visible, calculated using Mie theory	16
3.1.	Optical constants n and k for amorphous carbon	23
3.2.	Crystal structures of graphite	28
3.3.	<pre>Imaginary part of the dielectric function for the E⊥C (a) and E∥C (b) polariza- tions of graphite</pre>	33
3.4.	Reflectance of graphite and glassy carbon	35
3.5.	Real part of the E L C polarization of graphite as computed by the Kramers-Kronig method	36
3.6.	Imaginary part of the E L C polarization of graphite as computed by the Kramers- Kronig method	37
3.7.	Optical constants of n and k for the E L C polarization of graphite as computed by the Kramers-Kronig method	. 38
3.8.	Oscillator fit of the reflectance of graphite (E L C polarization)	. 40
3.9.	Optical constants n and k of the E // C polarization of graphite	. 42
3.10.	Adjusted optical constants n and k of the E // C polarization of graphite	. 44
3.11.	Real and imaginary parts of the dielectric function of the E // C polarization of graphite	. 45
3.12.	Reflectance of the E // C polarization of graphite	. 46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

,

LIST OF ILLUSTRATIONS--Continued

Figure		Page
3.13.	Real part of the dielectric function of glassy carbon, as computed by the Kramers-Kronig method	52
3.14.	Imaginary part of the dielectric function of glassy carbon, as computed by the Kramers- Kronig method	53
3.15.	Optical constants n and k of glassy carbon as computed by the Kramers-Kronig method and comparison to Pluchino et al. (1980) results	54
3.16.	Oscillator fit of the reflectance of glassy carbon	55
4.1.	Scanning electron microscope view of two types of graphite particles	65
4.2.	Scanning electron microscope view of "LBL smoke" particles and lampblack particles	66
4.3.	Transmission electron microscope view of glassy carbon with magnification 250KX	67
4.4.	Variation of the optical density (OD) of glassy carbon, as a function of the mass density σ at various wavelengths	72
4.5.	Experimental extinction for graphite, com- pared to sphere theory (CS) and to CDE theory	74
4.6.	Experimental extinction for "LBL smoke" with aging effect observed and comparison to sphere theory (CS) and to CDE theory	77
4.7.	Comparison of experimental extinctions by "LBL smoke" and by lampblack	79
4.8.	Comparison of experimental extinction to calculated extinctions for glassy carbon around $\lambda ~ 0.22 \ \mu m$	82
4.9.	Comparison of experimental extinctions for graphite and glassy carbon to calculated extinctions for graphite around $\lambda \sim 0.22~\mu m$	83

x

LIST OF TABLES

Tables		Page
3.1.	Techniques for determining optical constants of solids	26
3.2.	Survey of optical properties of graphite	31
3.3.	Oscillator parameters for the fit of the reflectance curve for the E L C direction of graphite	41
3.4.	Oscillator parameters for the fit of the reflectance curve for the E // C direction of graphite	47
3.5.	Spectral region and instrument	49
3.6.	Oscillator parameters for the fit of the reflectance curve of glassy carbon	56
3.7.	Values of $\sum_{j} \omega_{Pj}^{2} \ldots \ldots \ldots \ldots$	58
	Results for index n and k obtained by the Kramers-Kronig method and by oscillator fit, in the case of glassy carbon	61
3.9.	n and k from this work and those of Taft and Phillip (1965) and Philipp (1977) at the same wavelengths	61
4.1.	Measured extinction coefficients at some wavelengths	80

ABSTRACT

Optical properties of carbon are studied in bulk state from $\lambda \sim 0.05$ to 100 µm for graphite, and from $\lambda \sim 0.05$ to 1000 µm for glassy carbon; in small particle state, the optical studies cover the spectral range going from $\lambda \sim 0.1$ to 100 µm for all the materials.

A Kramers-Kronig analysis of near normal reflectance data and/or a reflectance data fit to a Drude-Lorentz model gave bulk optical constants. These optical constants are used in theoretical calculations of extinction and the results compared with experimental results obtained from measurements of a variety of carbon particles. It is inferred that the high experimentally observed extinction is mainly due to a shape effect.

xii

CHAPTER 1

INTRODUCTION

Optical properties of small particles have become important for a variety of reasons. For example, atmospheric scientists are concerned with the effects of small particles on weather. It is known that the role of atmospheric aerosols in the earth's heat balance depends on their absorptivity and scattering properties (National Academy of Sciences, 1975). In order to predict accurately whether the warming tendency due to absorption and the cooling tendency due to backscattering in the earth's atmosphere will dominate, it is necessary to understand the optical properties of aerosol particulates (Twomey and Huffman, 1982).

The optical properties of small particles are important in astrophysics. The astrophysicist needs to understand the extinction by small particles in order to infer the nature of the solid grains responsible for the observed interstellar absorptions (Huffman, 1977).

Two further examples demonstrate the great diversity of applications of small particles. For military applications, it is desirable to understand the optical properties of particles which are to be used to generate smoke clouds for obscuration of laser weapons and surveillance devices;

for certain solar energy collector types, it has been shown that the energy collection is enhanced by doping the working fluid with very small absorbing particles (Hunt, 1980).

In applications of the later kinds, it is necessary to maximize the absorption by small particles. Thus carbon is a prime candidate material. For example, Abdelrahman, Fumeaux, and Suter (1979) have chosen graphite particles as ideal for suspension in the gas of a solar receiver. Hunt (1978, 1979) has designed a collector-heat exchanger which will utilize carbon particles suspended in air.

The extinction by small particles can be calculated for certain shapes if the optical constants as a function of wavelength are known. Although the literature on optical constants of carbon is abundant, the information is disparate and confined to limited spectral regions. Workers rarely agree with one another in their results. (See Twitty and Weiman, 1971 for a review.)

In this study, two carbonaceous materials, graphite and glassy carbon, chosen because they are well defined (and thus reproducible), are discussed. Graphite is the crystal form, and glassy carbon appears to be the best defined carbon variety close to ideally amorphous carbon.

Definitions and concepts which are dealt with in this work are covered in Chapter 2. In Chapter 3, optical constants of graphite and glassy carbon are surveyed; reflectance data of these materials are compiled from the

literature and augmented by our own measurements and/or extrapolations. The data are analyzed to yield optical constants over a broad spectral range. In Chapter 4, extinction by fine particles and smoke of carbon is experimentally measured, and results compared to theoretical calculations done with the use of the measured optical constants.

CHAPTER 2

REVIEW OF CONCEPTS AND DEFINITIONS

This chapter establishes the notation, defines the optical constants and summarizes the theories which will be used in this work.

After defining the optical constants of solids and showing their relation to the dielectric constant, the classical dispersion relations and the Kramers-Kronig relations are reviewed. The extinction by small particles are introduced through the Mie theory for spheres which leads to the Rayleigh approximations. Rayleigh theory for ellipsoids, and its generalization to the distributions of ellipsoidal shape, are then discussed. Finally, a sum rule for small particle extinction is introduced.

Complex Index of Refraction;Relationto the Complex Dielectric Constant*

Optical properties of solids deal with the interaction of electromagnetic radiation with solid matter. This interaction is described by wavelength dependent complex index of refraction:

$$m(\lambda) = n + i k , \qquad (1)$$

^{*}For a detailed treatment, see any E & M text, Jackson (1975) for example.

where n is the real index of refraction and k the index of absorption. n and k are related to the complex dielectric function ε through the relation:

 $m^2 = (n + ik)^2 = \varepsilon$

From $\varepsilon = \varepsilon_1 + i\varepsilon_2$ it follows that:

$$\varepsilon_1 = n^2 - k^2 \tag{2}$$

$$\varepsilon_2 = 2nk$$
 (3)

The (n,k) or $(\varepsilon_1,\varepsilon_2)$ pair describes completely the optical properties of a material, but they cannot be directly measured by experiment. The experimental connection is made through the reflectance:

$$R = \left| \frac{E_{r}}{E_{i}} \right|^{2} = |r|^{2}$$

where r, the reflectivity coefficient, is a complex function, defined at the surface of a solid, as the ratio of the reflected electric field E_r to the incident electric field E_i . At normal incidence:

$$r = \frac{(n-1) + ik}{(n+1) + ik}$$
 (4)

and

$$R = \frac{(n-1)^2 + k^2}{(n+1)^2 + k^2} \qquad . \tag{5}$$

Dispersion Relations

Classical Dispersion Relations*

The classical theory of absorption was developed by Lorentz (for insulators) and Drude (for free electron metals). The combined use of the two models yields:

$$\varepsilon = 1 - \frac{\omega_p^2}{\omega^2 + i\gamma\omega} + \sum_{j} \frac{\omega_{pj}^2}{\omega_{j}^2 - \omega^2 - i\gamma_j\omega}$$

which is equivalent to

$$\varepsilon_{1} = 1 - \frac{\omega_{p}^{2}}{\omega^{2} + \gamma^{2}} + \frac{\sum}{j} \frac{\omega_{pj}^{2}(\omega_{j}^{2} - \omega^{2})}{(\omega_{j}^{2} - \omega^{2})^{2} + \gamma_{j}^{2}\omega^{2}}$$
(6)

$$\varepsilon_{2} = \frac{\gamma \omega_{p}^{2}}{\omega (\omega^{2} + \gamma^{2})} + \int_{j}^{\Sigma} \frac{\omega_{pj}^{2} \omega^{\gamma} j}{(\omega_{j}^{2} - \omega^{2})^{2} + \gamma_{j}^{2} \omega^{2}} , \qquad (7)$$

where ω_{j} , γ_{j} and ω_{pj} are respectively the resonance frequency, the damping constant and the plasma frequency of the jth oscillator. They determine the position, the width and the strength of the jth oscillator. The terms out of the summation signs are the Drude terms. The summation is over the number of oscillators. In more compact form (6) and (7) become:

$$\varepsilon_{1} = 1 + \sum_{j} \frac{\omega_{j}^{2} (\omega_{j}^{2} - \omega^{2})}{(\omega_{j}^{2} - \omega^{2})^{2} + \gamma_{j}^{2} \omega^{2}}, \qquad (8)$$

*For more information, see for example Wooten (1972, Ch. 3).

$$\varepsilon_{2} = \sum_{j} \frac{\omega_{pj}^{2} \omega_{j}^{\omega}}{(\omega_{j}^{2} - \omega^{2})^{2} + \gamma_{j}^{2} \omega^{2}} \qquad (9)$$

The Drude terms are obtained from (8) and (9) by assuming that the resonance peak of the first oscillator is at zero frequency ($\omega_{j=1} = 0$).

This multiple oscillator model is used in the determination of optical constants of solids. From a reflectance curve, the first values of the parameters ω_j , γ_i and ω_{pj} are found for each peak by locating its position, and determining its width and its strength. They are used in equations (8) and (9) to calculate $\varepsilon_1(\lambda)$ and $\varepsilon_2(\lambda)$ which, by the use of equations (2) and (3) yield $n(\lambda)$ and $k(\lambda)$; the n and k obtained are used in (5) to yield the reflectance. The parameters are varied until the calculated reflectance fits the measured reflectance as well as desired, giving the corresponding $\varepsilon_1(\lambda)$ and $\varepsilon_2(\lambda)$ or $n(\lambda)$ and $k(\lambda)$.

This technique is still valid even if the solid is anisotropic. In this case, the sample has to be well oriented and polarized light must be used.

The Kramers-Kronig Relations*

The reflectivity coefficient can be written as:

:0

$$\mathbf{r}(\omega) = \rho(\omega) e^{\mathbf{1}\theta} \qquad (10)$$

(10)

7

*See for example Wooten (1972, Ch. 6 and Appendix G).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Equating the real parts and the imaginary parts of (4) and (6) leads to:

$$n = \frac{1 - \rho^2}{1 + \rho^2 - 2\rho \cos \theta} , \qquad (11)$$

$$k = \frac{2\rho \sin \theta}{1 + \rho^2 - 2\rho \cos \theta} \quad . \tag{12}$$

The knowledge of the phase θ will allow the calculation of n and k. The determination of θ can be done through the use of the Kramers-Kronig relations, which connect the real and imaginary parts of the response function of a linear system. The response function must have the following characteristics:

It has to be frequency dependent.
It has to be causal.
It has to be analytic in the upper half of the
 complex ω plane.

It can be shown that the reflectivity coefficient is a response function between the incident and reflected wave at the surface of a solid. It can also be shown that

 $\ln r(\omega) = \ln \rho(\omega) + i\theta(\omega)$

satisfies the requirements for the application of the Kramers-Kronig relations.

The relation between $\theta(\omega)$ and $\rho(\omega)$ which is of interest in this treatment is:

$$\theta(\omega) = -\frac{2\omega}{\pi} P \int_{0}^{\infty} \frac{\ln \rho(\omega')}{\omega'^{2} - \omega^{2}} d\omega' ,$$

where P is a principal part. The removal of the principal part and the replacement of $\rho(\omega')$ by $|R(\omega')|^{\frac{1}{2}}$ gives:

$$\theta(\omega) = \frac{\omega}{\pi} \int_{0}^{\infty} \frac{\ln \left[R(\omega')/R(\omega)\right]}{\omega^{2} - \omega'^{2}} d\omega' \quad .$$

In terms of wavelength, the substitution of $\omega = 2\pi c/\lambda$ can be made to yield:

$$\theta(\lambda) = \frac{2\lambda}{\pi} \int_{0}^{\infty} \frac{\ln \left[R(\lambda^{*}) / R(\lambda) \right]}{\lambda^{*2} - \lambda^{2}} d\lambda^{*} \qquad (13)$$

Relation (13) suggests that the reflectance has to be measured from zero to infinite wavelength. This is impossible in practice; in general, the reflectance is measured for λ such that:

$$\lambda_{\min} \leq \lambda \leq \lambda_{\max}$$

Thus, (13) can be rewritten:

$$\theta(\lambda) = \frac{2\lambda}{\pi} \int_{0}^{\lambda \min} \frac{\ln \left[\frac{R(\lambda^{*})}{R(\lambda)} \right]}{\lambda^{*2} - \lambda^{2}} d\lambda^{*}$$

$$+ \frac{2\lambda}{\pi} \int_{\lambda \min}^{\lambda \max} \frac{\ln \left[\frac{R(\lambda^{*})}{R(\lambda)} \right]}{\lambda^{*2} - \lambda^{2}} d\lambda^{*} + \frac{2\lambda}{\pi} \int_{\lambda \max}^{\infty} \frac{\ln \left[\frac{R(\lambda^{*})}{R(\lambda)} \right]}{\lambda^{*2} - \lambda^{2}} d\lambda^{*}$$

$$= \theta_{1}(\lambda) + \theta_{2}(\lambda) + \theta_{3}(\lambda) \quad .$$

 θ_2 is calculated with the actual experimental data. For $\theta_1(\lambda)$ and $\theta_3(\lambda)$, some sort of extrapolation has to be done. For metal and metal-like materials, the Drude model can be used to find R(λ ') and compute $\theta_3(\lambda)$. For other kinds of materials, Steyer (1974) derived a relation based on the classical dispersion theory.

The short wavelength spectral range is more difficult to treat. To include all the interband transitions, the reflectance is approximated by:

$$R(\lambda) = R_{le} \times (\lambda/\lambda_{le})^{s} , \qquad (14)$$

where $\lambda < \lambda_{le}$ and s > 0. R_{le} and λ_{le} are the reflectance and the wavelength at the last experimental point. At lower wavelengths, the reflectance is approximated by:

$$R(\lambda) = R_{f} \times (\lambda/\lambda_{f})^{4} \qquad (15)$$

 R_{f} is calculated by the use of (14) at the point where the second extrapolation starts.

With this extrapolation, it is assumed that the wavelength is low enough to allow a free-electron description of the electrons.

These extrapolations are used in the integration of $\theta_1(\lambda)$ to yield (Wooten, 1972, p. 249):

$$\theta_{1}(\lambda) = \frac{1}{2\pi} \ln \left[\frac{R_{f}}{R(\lambda)}\right] \ln \left[\frac{|\lambda-\lambda_{1e}|}{\lambda+\lambda_{1e}}\right] + \frac{1}{\pi} \sum \left[s \frac{(\lambda_{1e}/\lambda)^{2n+1}}{(2n+1)^{2}} + (4-s) \frac{(\lambda_{f}/\lambda)^{2n+1}}{(2n+1)^{2}}\right]. \quad (16)$$

The parameter s and the wavelength λ_{f} are chosen such that the calculated optical constants are in agreement with those obtained from an independent measurement in a limited spectral range.

The actual reflectance data and the extrapolations are used in the numerical integration which is done by the use of Simpson's rule of integration.

Extinction by Small Particles

Introduction to Mie Theory

A beam of light which passes through a collection of particles is attenuated. This attenuation, due to scattering and absorption by the particles, is called extinction which is defined to be:

Extinction = Scattering + Absorption .

A way for inferring the extinction is to calculate the transmission T of the beam through a path length *l* of the distribution of particles. For N spherical particles per unit volume, each of radius a:

$$T = I/I_{o} = \exp(-NQ_{ext}\pi a^{2}) \ell , \qquad (17)$$

where:

$$Q_{ext} = Q_{sca} + Q_{abs}$$

The Q's are called efficiency factors for spheres, and are related to the following quantities:

 $C_{sca} = Q_{sca} \pi a^2$ is the cross section for removal of energy from the incident beam by scattering, $C_{abs} = Q_{abs} \pi a^2$ is the cross section for removal of energy from the incident beam by absorption,

$$C_{ext} = C_{sca} + C_{abs}$$
 (18)

Mie (1908) and Debye (1909) developed a theory for calculating the efficiency factors for spheres of arbitrary sizes. This theory, usually referred to as the Mie theory is presented in books by van de Hulst (1957), Kerker (1969) and Bohren and Huffman (1983).

From the theory:

$$Q_{\text{sca}} = \frac{2}{x^2} \sum_{n=1}^{\infty} (2n+1) \left[|a_n|^2 + |b_n|^2 \right], \quad (19)$$

$$Q_{abs} = \frac{2}{x^2} \sum_{n=1}^{\infty} (2n+1) \operatorname{Re}(a_n + b_n)$$
, (20)

where $x = 2\pi a/\lambda$ is the size parameter. The coefficients a_n and b_n are complex expressions involving spherical Bessel and Hankel functions and their derivatives. They can be computed for given values of the complex index of refraction

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

n and the size parameter x. The computation procedure is given by Wichramasinghe (1973) and related computer programs are in the book by Bohren and Huffman (1983).

Theory and experiment are connected as follows. If we define:

$$N = n/V$$
 ,

where n is the total number of particles in the volume V,

$$C = m/V = \frac{n}{V}\frac{4}{3}\pi a^3 \rho$$

where m is the total mass of particles and ρ the mass density of the particle material, (17) becomes:

$$I/I_{o} = \exp \left(-\alpha \frac{Cl}{\rho}\right)$$
$$= \exp \left(-\alpha \frac{\sigma}{\rho}\right) , \qquad (21a)$$

$$\alpha = \frac{\rho}{\sigma} \ln \left(I_{0} / I \right) .$$
 (21b)

,

If the optical density (O.D.) defined as: O.D. = $\frac{1}{2.3} \ln \frac{I_0}{T}$ is used, then α = 2.3 $\frac{\rho}{\sigma}$ (O.D.), where σ is the mass/area of particles. Also

$$\alpha = \frac{Q_{\text{ext}}\pi a^2}{4/3\pi a^3} = \frac{3}{4}\frac{Q_{\text{ext}}}{a} . \qquad (22)$$

 α is the volume normalized extinction coefficient and is related to the mass extinction coefficient α_p by:

$$\alpha_{\rm p} = \frac{\alpha}{\rho} \qquad . \tag{23}$$

In the case of a size distribution of spheres:

$$\alpha = \frac{\int N(a)Q(a)\pi a^{3}da}{\int N(a)\frac{4}{3}\pi a^{3}da}$$

where N(a) is the number of particles per unit volume with radii varying between a and a + da.

From (21), α can be determined experimentally by measuring the transmission and σ . The use of (22) leads to an experimental value of Q_{ext} .

If the particles are very small compared to the wavelength (a << λ) and when the phase shift of light in the particle is negligible (|m|x << 1) (Rayleigh approximation), then the Mie efficiency factors can be expanded in power series as functions of the size parameter x; the lowest power terms of importance in a first approximation are:

$$Q_{sca} = \frac{8}{3} x^{4} \left| \left(\frac{m^{2} - 1}{m^{2} + 2} \right) \right|^{2} , \qquad (24)$$

$$Q_{abs} = 4 \times Im \left\{ \frac{m^2 - 1}{m^2 + 2} \right\}$$
 (25)

Relations (24) and (25) apply when the particles are in a medium with complex index of refraction $m'^2 = 1$. They can be generalized to give:

$$Q_{sca} = \frac{8}{3} x^{4} \left\| \left(\frac{\varepsilon - \varepsilon_{m}}{\varepsilon + 2\varepsilon_{m}} \right) \right\|^{2} , \qquad (26)$$

$$Q_{abs} = 4 \times Im \left\{ \frac{\varepsilon - \varepsilon}{\varepsilon + 2\varepsilon_m} \right\}$$
, (27)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where ε is the dielectric constant of the particles and ε_m is the dielectric constant of the medium in which they are embedded.

The Rayleigh approximations have introduced two main simplifications in the treatment of extinction by small particles. First of all, there is no shape effect in volume normalized extinction, as illustrated in Fig. 2.1. At small radii, the extinction is a constant. However, for radii above 0.012 μ m, the extinction is extremely radius dependent. One notices a decrease in extinction for radius larger than 0.1 μ m. This decrease is due to saturation effect; when absorption is very effective, the inner parts of the sphere do not participate in the absorption process. With larger spheres, more of the inner volume is ineffective, which results in a decrease of the extinction per unit yolume.

From an experimental point of view, one does not have to worry about the size distribution of particles if they are small enough compared to the wavelength. This occurs easily in the IR spectral range.

The second simplification introduced by the Rayleigh approximations is that the shape effects can be more easily treated theoretically, as will be shown in the next section.

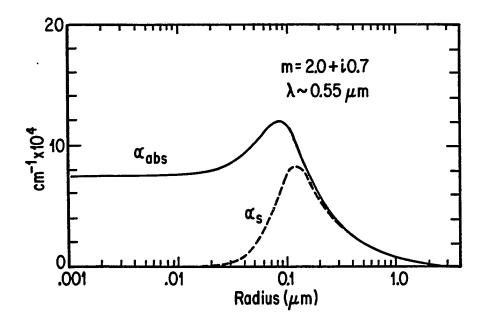


Fig. 2.1. Absorption and scattering cross sections normalized per unit volume of solid for carbon in the visible, calculated using Mie theory.

Rayleigh Theory for Ellipsoids; The Shape Distribution

Small particles have been discussed with the assumption that they are spherical. Although this is not very often true, the spherical hypothesis allowed the use of the Mie theory which can be generalized to infinite cylinders only. A more realistic shape for particles is the ellipsoid, for which polarizability in an electric field can be determined and used in the derivation of an approximate expression for the absorption and scattering cross-sections, if the Rayleigh conditions are valid. The derivation of the polarizability can be found in the bibliography given for the Mie theory.

For an ellipsoidal particle with semi-axes a, b and c in an electric field parallel to the j^{th} axis (j=1,2,3), polarizability is given by:

$$\alpha_{j} = \frac{V}{4\pi} \frac{\varepsilon - \varepsilon_{m}}{\varepsilon_{m} + L_{j}(\varepsilon - \varepsilon_{m})} , \qquad (28)$$

where $V = (4/3)\pi$ abc is the volume of the ellipsoid. The depolarization factors L_i are given by:

$$L_{1} = \frac{abc}{2} \int \frac{ds}{(s+a^{2}) \{(a^{2}+s)(b^{2}+s)(c^{2}+s)\}^{\frac{1}{2}}}, \quad (29)$$

where:

$$s = a + b + c$$
.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

 L_2 and L_3 are computed the same way, with the right substitution in (29). Using the integrals by which the L_j 's are calculated, it can be shown that:

$$\sum_{j=1}^{3} L_{j} = 1$$
 (30)

In the Rayleigh approximations, C_{sca} and C_{abs} for a single ellipsoid of abitrary L_i are:

$$C_{sca}^{j} = \frac{k^{4}}{6\pi} V^{2} \left| \frac{\varepsilon - \varepsilon_{m}}{\varepsilon_{m} + L_{j}(\varepsilon - \varepsilon_{m})} \right|^{2} , \qquad (31)$$

$$c_{abs}^{j} = kV \operatorname{Im} \left\{ \frac{\varepsilon - \varepsilon_{m}}{\varepsilon_{m} + L_{j}(\varepsilon - \varepsilon_{m})} \right\}$$
 (32)

The superscript j shows that E field is parallel to the jth axis; $k = 2\pi/\lambda$. For a collection of ellipsoids randomly oriented, an average value is taken; the absorption case is given:

$$\langle C_{abs} \rangle = \frac{V}{3} k \sum_{j=1}^{3} \frac{\varepsilon_{m} \varepsilon_{2}}{L_{j} \{ [\varepsilon_{1} + \varepsilon_{m} (1/L_{j} - 1)]^{2} + \varepsilon_{2}^{2} \}} .$$
(33)

From (33) it can be seen that resonance occurs when:

$$L_{j}\varepsilon_{1} + \varepsilon_{m}(1-L_{j}) = 0$$

$$\varepsilon_{1} = -\varepsilon_{m}(1/L_{j} - 1) . \qquad (34)$$

or

Since $0 \leq L_{j} \leq 1$, the resonance occurs only for negative values of ε_{1} . For spheres, $L_{j} = 1/3$ for all directions, and the resonance is obtained for:

$$\varepsilon_1 = -2\varepsilon_m$$

A distribution of identical ellipsoids with arbitrary L_j 's will give three absorption peaks because of the three values of L_j .

A more general treatment of the preceding case is done by considering a variety of shapes of ellipsoids.

Given a shape distribution expression $P(L_1,L_2)$, it is possible to compute:

$$\langle \langle C_{abs} \rangle \rangle = \iint P(L_1, L_2) \langle C_{abs} \rangle dL_1 dL_2 .$$
 (35)

The integration is done over L_1 and L_2 only since from (30) it is seen that only two L_j 's are independent.

Assuming that all shapes of ellipsoids are equally probable, which mathematically means that $P(L_1,L_2)$ is a constant, Huffman and Bohren (1980) found (35) to be:

$$\langle \langle C_{abs} \rangle \rangle = k \langle V \rangle \operatorname{Im} \left[\frac{2\varepsilon \varepsilon_{m}}{\varepsilon - \varepsilon_{m}} \log (\varepsilon / \varepsilon_{m}) \right] .$$
 (36)

(For the log calculation, use $|\varepsilon|$ and $-\pi < \theta < \pi$.) For this treatment, a system of particles with all shapes of ellipsoids should produce absorption over the whole spectral range where ε_1 is negative. Rathmann(1981, p. 18) calculated aluminum absorption coefficients for spheres, single ellipsoids and a continuous distribution of ellipsoids.

Relation (36) is used in our theoretical calculations, and the corresponding curves are labeled CDE (continuous distribution of ellipsoids).

Sum Rule for Extinction

Bohren and Huffman (1983) have derived a sum rule for extinction by spherical particles:

$$\int_{0}^{\infty} C_{\text{ext}}(\lambda) \ d\lambda = 4\pi^{3}a^{3} \frac{\varepsilon(\lambda=\infty)+1}{\varepsilon(\lambda=\infty)+2} \quad . \tag{37}$$

For conducting materials, $\varepsilon(\lambda=\infty)$ is large; thus (37) has an upper limit such that:

$$\int_{0}^{\infty} C_{ext}(\lambda) d\lambda \leq 4\pi^{3}a^{3} .$$
 (38)

Using (22) in conjunction with $C_{ext} = Q_{ext} \pi^2 a^2$ gives:

$$C_{ext}(\lambda) = \frac{4}{3} \pi a^{3} \alpha(\lambda) \qquad (39)$$

A substitution of (39) in (38) leads to:

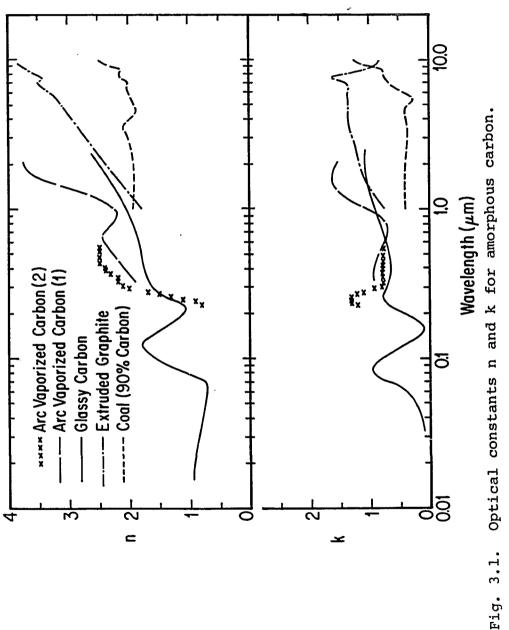
$$\int_{0}^{\infty} \alpha(\lambda) \, d\lambda \leq 3\pi^{2} \quad . \tag{40}$$

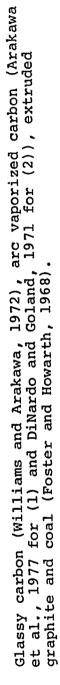
This relation will be used to check the sphericity of experimentally produced particles.

The sum rule (37) was first derived by Purcell (1969) for spheroidal particles.

.

•


·


CHAPTER 3

BULK OPTICAL CONSTANTS

Carbon is the generic designation of a large variety of carbonaceous materials including graphite and amorphous carbon. Graphite and amorphous carbon are well defined, but many types of coal and soot differ in composition and structure. According to Dalzell and Sarofin (1969), soots are randomly mixed graphitic particles in a matrix of amorphous carbon; they differ from one another by their hydrogen/ carbon ratio. The actual difference in the composition of carbonaceous materials, and apparent differences resulting from the use of inappropriate experimental technique in the determination of the optical constants, have led to results, which in some cases, are hardly comparable. Disagreements in results are shown through the review of some previous work presented below. The large variation in published optical constants can be seen in Fig. 3.1.

Stull and Plass (1960) derived dispersion relations for carbon, which they used to fit some other workers' reflectance data between $\lambda \sim 0.436$ µm and 13 µm. The same method has been used by Dalzell and Sarofin (1969) to fit soot pellet reflectance data in about the same spectral

range. The results of the two groups do not agree with one another. More recently, Lee and Tien (1981) derived a dispersion model based on electronic band structure considera-The dispersion constants were determined from the tions. transmission data of soot flame. They questioned their predecessors' methods and results. Tomaselli et al. (1981) measured reflectance of pressed pellets of various carbonaceous materials. They graphically analyzed data by plotting iso-reflectance curves and reading n and k from published tables. None of their results came close to published results for similar materials. DiNardo and Goland (1971) derived optical constants of arc evaporated carbon film by matching the transition radiation theory to experiments from λ \sim 0.23 µm to 0.56 µm. Arakawa, Williams, and Inagaki (1977) studied a similar material from λ \sim 0.33 μm to 2.1 A comparison of the two results shows a clear disagreeμm. ment (see Fig. 3.1). According to Arakawa et al. (1977), the optical properties of arc evaporated carbon vary with the conditions of preparation of the film. Pluchino et al. (1980) isolated a single micro-sized particle of carbon; they electrostatically suspended and irradiated it with a The scattered radiation intensity was measured laser beam. as a function of angle. Electron-microscopy showed that the particle was spherical. Data were then analyzed with the Mie theory. At $\lambda \sim 0.48 \ \mu m$ and for a particle radius a \cong 3.06 µm, n and k are found to be 1.7 and 0.8 respectively.

This review along with Fig. 3.1 has shown that there is no general consensus on optical constants of carbon; it has shown also that available optical constants are confined to a limited spectral range.

In this section, we survey the optical constants of graphite and glassy carbon, and gather existing reflectance data on these materials. In order to calculate the optical constants over a wide spectral range, the reflectance information gathered is completed by our measurements and/or extrapolations wherever it is necessary, to yield a reflectance curve over a wide spectral range, for use in the Kramers-Kronig analysis. A fit of the reflectance data, based on the combined use of Drude and Lorentz dispersion relations has also been done.

Techniques for the determination of optical constants are given; then graphite and glassy carbon are studied in turn.

Techniques for Measuring Optical Constants

Optical properties of solids are due to the wavelength dependence of n and k (ε_1 and ε_2) which cannot be measured directly experimentally. The techniques used to collect information leading to optical constants are summarized in Table 3.1.

Table 3.1. Techniques for determining optical constants of solids.

From Huffman (1977).

	Technique	Comments		
Trans	mission methods			
(1)	n from minimum deviation; k from transmission and n	High accuracy for n		
(2)	n and k from transmission and normal incidence reflec- tance measurements	Easy but useful only in relatively transparent regions		
Refle	ection methods			
(1)	Two polarized reflectance measurements at one oblique incidence angle	Larger sample sizes required		
(2)	Two reflectance measurements at different angles			
(3)	Determination of special angles (i.e., Brewster's angle and reflectance there)		
(4)	Determination of ellipso- metric parameters	Sensitive to surface films		
(5)	Reflectance in a broad wavelength range and Kramers-Kronig analysis	Extrapolation to 0 and to ∞ necessary		
(6)	Reflectance vs. wavelength and oscillator model fit to the data	Compact presentation of results as oscillator parameters		
Other methods				
(1)	Electron energy loss measurements	Does not require polished surfaces		

.

Graphite

Perfect graphite crystals are rare. Figure 3.2 represents the ideal natural graphitic structure. The basal planes are such that every other plane fits exactly over the first; this is the ABAB arrangement. Another one is such that the basal planes are in the ABCABC sequence.

The atoms of carbon are associated in hexagonal rings. Each atom has four electrons on its outer shell; three of them (σ -electrons) participate in holding together the hexagonal ring by covalent bonds; the fourth one (π electron) moves in the ring and contributes to the bonding between planes. Many properties of graphite, including its optical properties, are highly anisotropic. The anisotropy of the optical properties is due to the ease with which the π -electrons move in the layer planes; higher energy is needed to jump from plane to plane.

Forms most closely approaching the ideal structure of the material graphite are pyrolytic graphite and annealed pyrolytic graphite. Pyrolytic graphite is produced by a decomposition of a hydrocarbon on a hot surface. Although it is not a true graphite, its properties are extremely anisotropic. It can be converted into almost perfect single crystals by heating at temperatures above 2900°C for several hours. It is then called (stress) annealed pyrolytic graphite (Shobert, 1964).

27

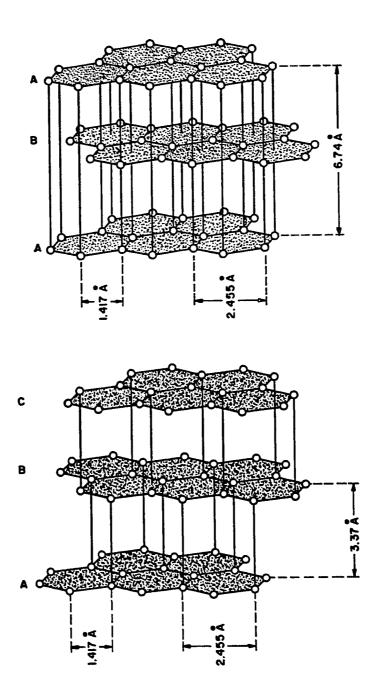


Fig. 3.2. Crystal structures of graphite. From Shobert (1964).

The optical properties of graphite depend on the direction of the E-field with respect to its optical c-axis, $E \perp C$ and $E \parallel C$ leading to ε_{\perp} and ε_{\parallel} respectively. Because samples can easily be prepared by cleavage of the crystal in the basal plane, many optical constants for the $E \perp C$ direction are available in the literature. Fewer measurements have been done for $E \parallel C$ since the sample preparation is considerably more difficult in this case. $E \perp C$ and $E \parallel C$ optical constants of graphite will be reviewed in turn.

Survey of Optical Constants of Graphite

Many workers measured reflectance on natural graphite, pyrolytic graphite or annealed pyrolytic graphite. They analyzed their data by the Kramers-Kronig method (Taft and Philipp, 1965; Philipp, 1977), by fitting (Greenaway et al., 1969; Klucker, Skibowski, and Steinman, 1974) or by the use of Fresnel's equations (Carter et al., 1965).

Zeppenfeld (1967) was the first to use the electron energy loss method for deriving optical constants of graphite. This method consists of determining the properties of bulk materials by measuring the transmission of electron beams through thin films. ε_1 and ε_2 are obtained by the Kramers-Kronig analysis of the energy loss function $f(\omega)$ which is related to the dielectric function by (Daniels et al., 1970):

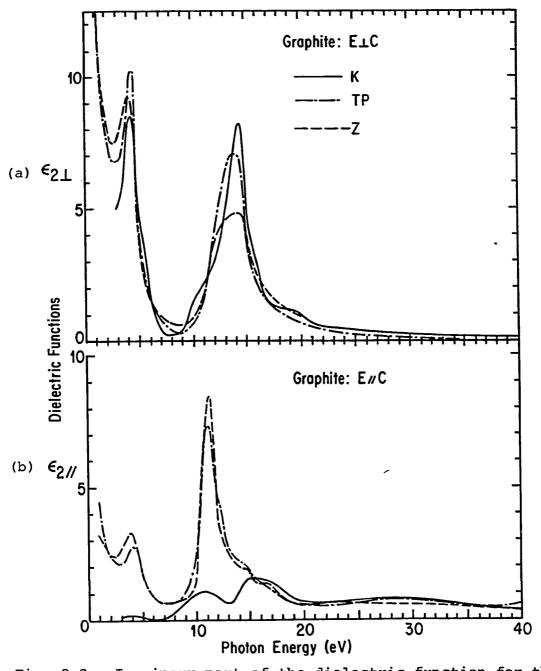
 $f(\omega) = - Im (1/\epsilon)$

The survey of optical constants is summarized in Table 3.2.

Comparison of results for $E \perp C$ is seen in Fig. 3.3a which shows ε_2 in a spectral range which contains a strong peak. Good agreement exists in the shape of the curve, but the discrepancy in the magnitude of the peak is obvious.

For E // C, Fig. 3.3b shows complete disagreement between the results of the reflectance techniques and those of the electron energy-loss method. Because of the severity of the discrepancy, Venghaus (1975) repeated the electron energy-loss measurements on graphite. His results were in agreement with the measurements done with the same technique by other workers, but still in disagreement with reflectance method results. Wessjohan (Venghaus, 1975) computed reflectance using Venghaus (1975) and Klucker et al. (1974) ϵ data; Venghaus's results compared favorably with experiments, but those from Klucker et al. failed to do so. Although Klucker (1971), who noticed the discrepancy between his experimental results and calculations, assigned this failure to scattered light, Venghaus concluded that the electron energy-loss method gives better results.

In IR ($\lambda \sim 2.5 \ \mu m$ to 100 μm), Venghaus measured the reflectance on graphite in the E//C direction and analyzed the data by the Kramers-Kronig method.


Table 3.2.	. Survey of	optical	properties of grap	graphite.	
Reference		Range (µm)	Technique	Polarization	Comments
Carter et (1965)	al.	0.11 - 0.30	Reflectance	ЕТС	Agreement with Taft and Philipp
Ergun (1967)	57)	0.55	Reflectance	Е⊥С,Е∥С	High values of n
Foster & F (1968)	Howarth	1 - 9.2	Reflectance	Е // С	High IR results
Greenaway et al (1969)	et al.	0.25 - 0.62	Multi-angle reflectance	Е ІС, Е ИС	Compares well with this work
Klucker et (1974)	t al.	0.03 - 0.41	Multi-angle reflectance	Е ⊥ С, Е∥С	Very low values of ^{E_2}
Lenham & ¹ (1966)	Treherne	0.4 - 19	Reflectance	Е І С, Е <i>И</i> С	
Philipp (1	(1611)	1 - 1239	Reflectance	Е Т С	Sato reflectance results used
Sato (1968)	8)	41 - 206	Reflectance	с – ы	Did not take free electron behavior into consideration in his analysis
Venghaus	(1975)	0.03 - 1.2	Energy-loss	Е ⊥ С, Е∥С	Agreement with Zeppenfeld
Venghaus	(1677)	2.5 - 83	Reflectance	Е // С	Published results

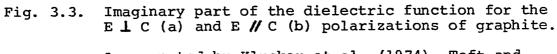
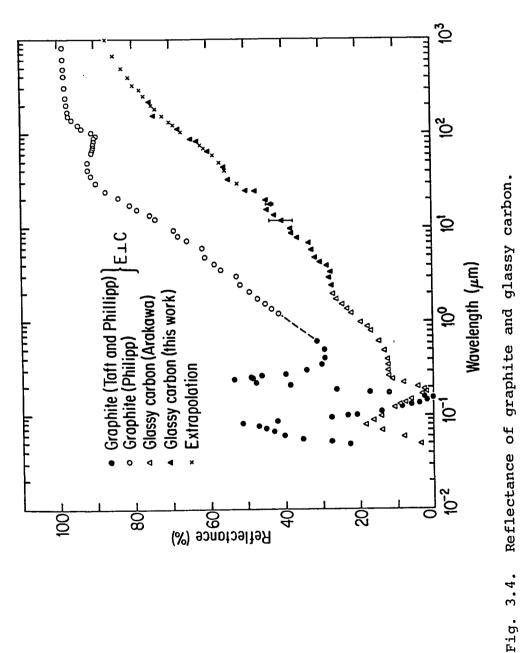

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 3.2--Continued

Reference	Range (µm)	Technique	Polarization	Comments
Taft & Philipp (1965)	0.05 - 41	Reflectance	บ 1 ย	Commonly accepted results
Zeppenfeld (1967)	0.03 - 1.2	Energy-loss	в.1. с, в // с	First to use energy-loss tech- niques on graphite

.



As computed by Klucker et al. (1974), Taft and Philipps (1965), and Zeppenfeld (1967).

This Study's Investigation on Graphite

In order to have a coherent set of optical constants in a broad spectral range for the E \bot C direction of graphite, and also to investigate the discrepancy of the ε_2 peak at $\lambda \sim 0.088 \ \mu\text{m}$, Philipp's (1977) extended reflectance data (see Fig. 3.4) have been analyzed by the Kramers-Kronig method. Philipp obtained his extended reflectance data by combining previously published results (Taft and Philipp, 1965), measurements between $\lambda \sim 12.4 \ \mu\text{m}$ and 41 μm , and Sato's (1968) data.

It is known that the Kramers-Kronig analysis results depend strongly on the extrapolation at low wavelengths (Wooten, 1972). To satisfy the requirements of the extrapolation, which is explained in Chapter 2, some guide values of n and k found from an independent experiment are needed. Huffman (1979), in work done at the University of Wisconsin monochromatic radiation facility, measured the transmission of a 0.27 µm thick cleaved graphite sample from $\lambda \sim 1.25$ µm to 0.15 µm. The values of n and k found from this experiment have been used as tests for the choice of the parameter s and the wavelength $\lambda.$ These values are s = 2, $\lambda_{\rm f}$ \sim 0.0258 Taft and Philipp used the results of the transmission um. of a 400Å thick sample from λ \sim 0.113 μm to 0.177 μm as guiding values in their calculations. Results of our calculations are shown in Figs. 3.5, 3.6, and 3.7 and in Appendix A.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

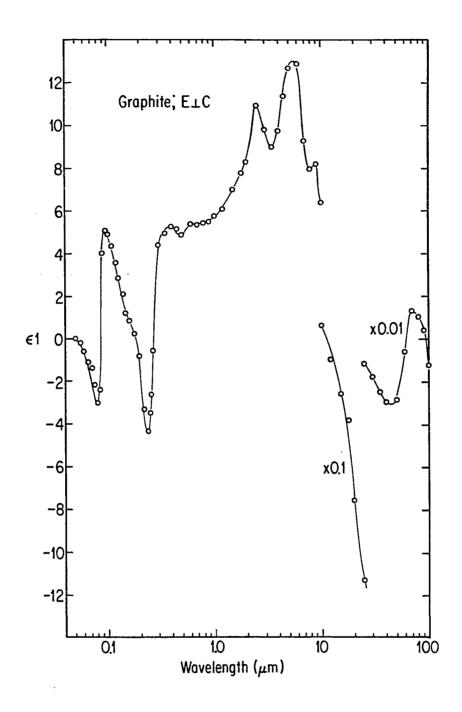
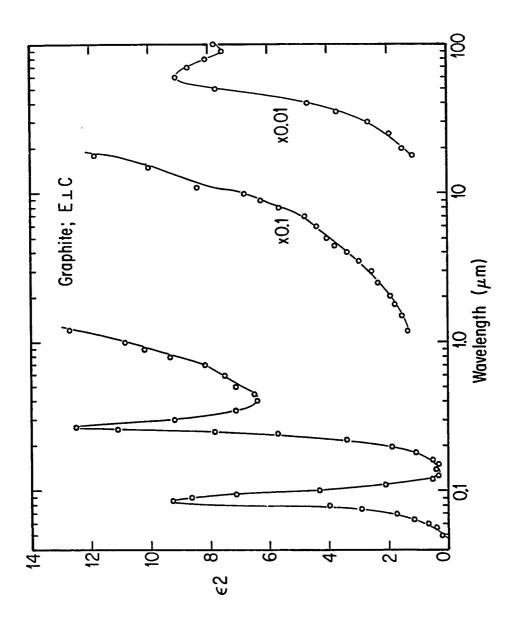
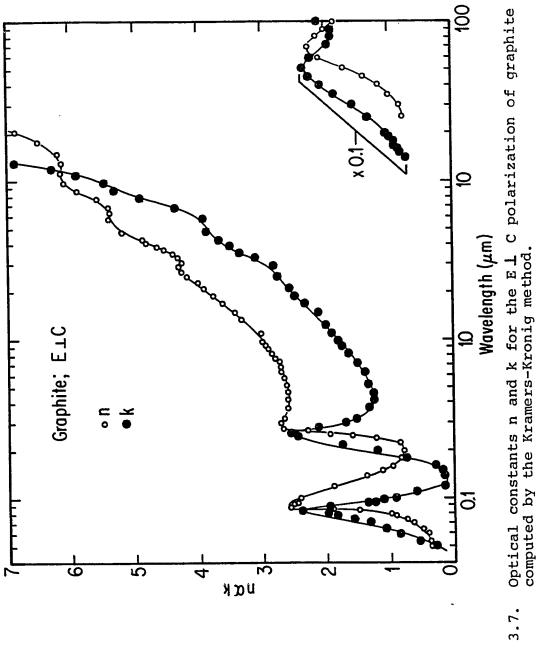
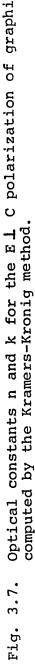
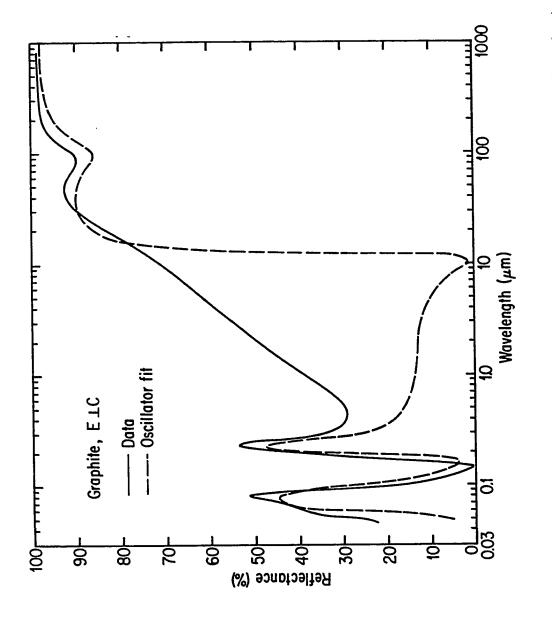
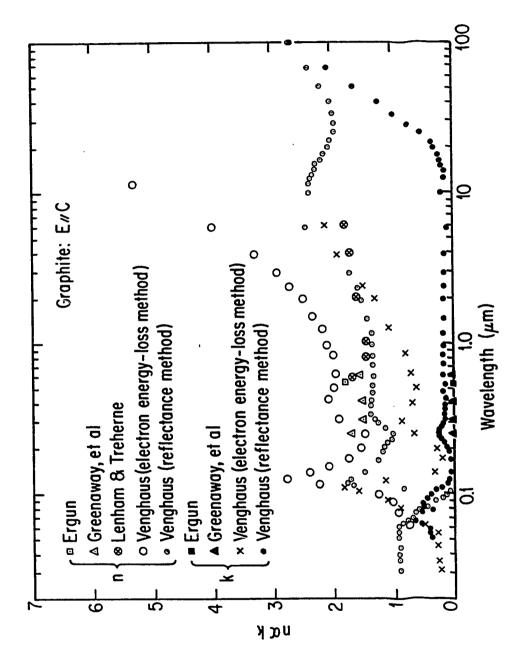





Fig. 3.5. Real part of the E \perp C polarization of graphite as computed by the Kramers-Kronig method.



The reflectance data fit result is shown in Fig. 3.8. A discussion of the discrepancy observed between the data and the fit from $\lambda = 0.3$ to 15 µm is given in the "Discussion of Results" section of this chapter. The oscillator parameters used are presented in Table 3.3.

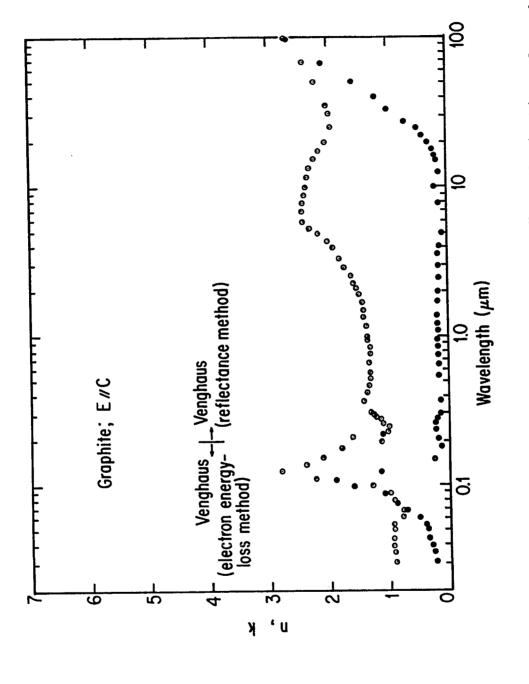
Representative values of ε_1 and ε_2 for the E // C direction of graphite derived from the reflectance and the electron energy-loss measurements have been converted to n and k and plotted (Fig. 3.9). Venghaus's results below (1977) argued $\lambda \sim 2.5$ m were obtained privately. Venghaus that reflectance measurements are not seriously affected by the roughness of the reflectance surface in the IR wavelength range; n and k obtained by optical methods are thus reliable from 2.5 µm to 100 µm. In the short wavelength range ($\lambda \sim 0.03$ to about 0.22 μ m), the increasing dependence on the reflectance on the state of the surface as the wavelength decreases makes the results of the optical method less reliable than those obtained with the electron energyloss technique. Since above $\lambda \sim 0.25 \ \mu m$, the Cerenkov radiation gives the dominant contribution to the electron energy-loss for E // C (Tossati and Bassani, 1970), the electron energy-loss results have been disregarded from λ \sim 0.25 µm to 2.5 µm. From 0.15 µm to 0.25 µm, geometrical considerations have been used. The slope of the electron energy-loss n curve at short $\lambda \sim 0.15 \ \mu m$ is the same as the slope of the reflectance n curve from λ \sim 0.21 μm to 0.25 $\mu m.$


Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Parameter	Value (cm^{-1})
Oscillator 1	ω _{pl}	1200
	ω1	0.00
	Υl	15.00
Oscillator 2	^ω p2	1300
	ω2	120
	Υ ₂	120
Oscillator 3	^w P3	6×10^{3}
	^ω 3	4×10^{3}
	Υ ₃	7.5×10^3
Oscillator 4	^ω P4	110×10^{3}
	ω4	98 x 10 ³
	Υ ₄	25×10^3

Table 3.3. Oscillator parameters for the fit of the reflectance curve for the E \bot C direction of graphite.

•


Based on that consideration, a connecting curve has been drawn between the two n curves from $\lambda \sim 0.15 \ \mu\text{m}$ to 0.21 μm . From this combination of optical method results and electron energy-loss measurements, a set of n and k data for $E \parallel C$ has been put together from $\lambda \sim 0.025 \ \mu\text{m}$ to 100 μm . (See Figs. 3.10 and 3.11 and Appendix A.)

For the E // C direction of graphite, the reflectance computed from n and k extracted from the literature has been fitted using a Drude-Lorentz oscillator model; the result is shown in Fig. 3.12. The oscillator parameters used are presented in Table 3.4.

Glassy Carbon

Glassy carbon, also known as vitreous carbon, is produced by the slow pyrolysis of polymers such as cellusen and aromatic resins. It looks like black glass, has a low density $(1.4 - 1.5 \text{ g/cm}^3)$ and also a low porosity and permeability to water. It has about the same hardness as glass; it withstands high temperature in absence of oxygen. X-ray studies have shown that glassy carbon has randomly oriented crystals which are not very much altered by heat treatment. At 3273° K, glassy carbon crystallite size is 6 mm; they are smaller at lower temperatures (Halpin and Jenkins, 1969).

Taft and Philipp (1965) published near normal incidence reflectance data of glassy carbon up to 26 eV. Williams and Arakawa (1972) published plots of n and k

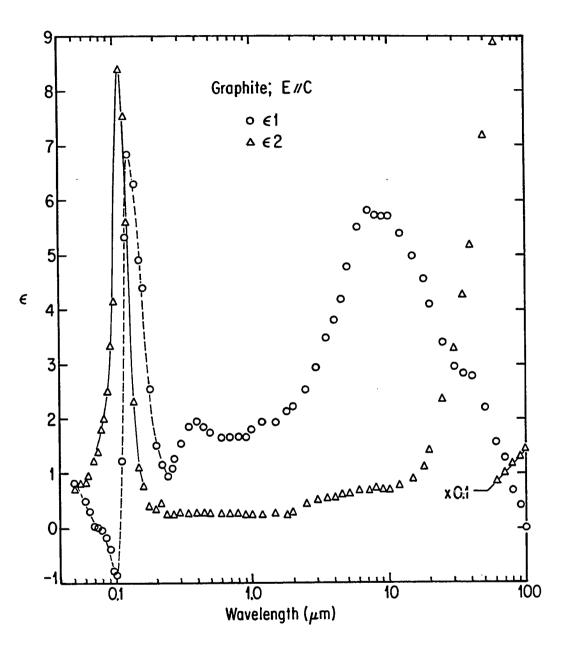
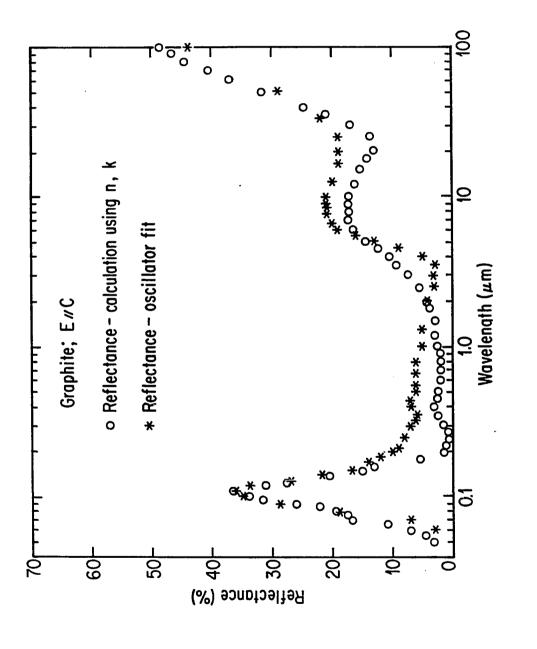



Fig. 3.11. Real and imaginary parts of the dielectric function of the E // C polarization of graphite.

As computed with the use of the adjusted optical constants of Fig. 3.10.

	Parameter	Value (cm ⁻¹)
Oscillator l	ω _{Pl}	8500
	ω1	0.00
	Υl	900
Oscillator 2	^ω ₽2	2950
	ω2	1500
	Υ ₂	1500
Oscillator 3	^ω Ρ3	5,000
	^ω 3	25,000
	Υ ₃	3,000
Oscillator 4	^ω Ρ4	95,000
	ω4	75,000
	Υ ₄	25,000

Table 3.4. Oscillator parameters for the fit of the reflectance curve for the E // C direction of graphite.

of glassy carbon from 0 to 82 eV, but it is practically impossible to obtain any detailed information below about 0.2 eV. It was therefore necessary to complete the available information.

In this study, optical constants based on the analysis of reflectance measurements extending to 225 μ m and a Drude fit to reflectance extending to 1000 μ m have been derived. The instruments used in the experiment, along with the near normal reflectance measurements will be presented; then the data analysis will be discussed.

Instrumentation and Measurements

Spectrophotometers to which suitable reflectometers (Steyer, 1974) have been attached were used for the measurements. A Cary 14 was used in the visible and in the near IR, a Perkin Elmer 398 in the IR, and a Beckman IR 11 for the far IR (see Table 3.5).

The Cary 14 and the Perkin Elmer 398 were used in a double beam mode, and the Beckman 11 in a single beam mode. The Beckman 11 was modified to use a liquid He cooled, doped germanium bolometer as a detector. The signal obtained was amplified by a PAR model 28 lock-in amplifier and then sent to a digital voltmeter or chart recorder (Rathmann, 1981).

The reflectometers were designed to give a near normal incidence reflectance. The one used on the Cary 14

Table 3.5. Spectral region and instrument.

Region	Wavelength (Frequency)	Instrument	Spectral Resolution
Far IR	250 μ m - 20 μ m (40 - 500 cm ⁻¹)	Beckman IR 11	∿ 5 cm
Mid IR	25 μ m - 2.5 μ m (400 - 4000 cm ⁻¹)	Perkin Elmer 398	∿ 5 cm
Near IR to Visible	$2 \mu m - 0.33 \mu m$ (5000 - 3.3 x 10 ⁴ cm ⁻	Cary 14	∿10 Å

From Rathmann (1981).

-

1

.

and the Perkin Elmer 398 is built by Barnes Engineering Company; the far IR one was designed and built in our lab.

An aluminized glass reference was used. Good alignment was always checked before any measurement; the aluminum standard or the sample was positioned and the mirrors of the reflectometer rotated until a maximum signal was obtained.

The measurement procedure was as follows:

- 1. Run the 100% reflectance line, say R_{100} , with the aluminum standard in place.
- Run the zero reflectance line, say R₀, without any sample.
- 3. Run the reflectance of a well-polished sample, say R_{c} .

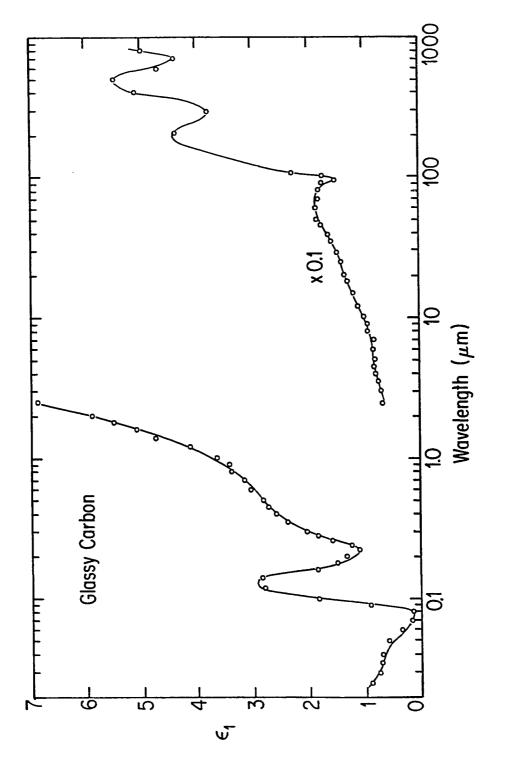
From the spectrum obtained, it is easy to find:

$$R'(\lambda) = \frac{R_{S} - R_{0}}{R_{100} - R_{0}} ,$$

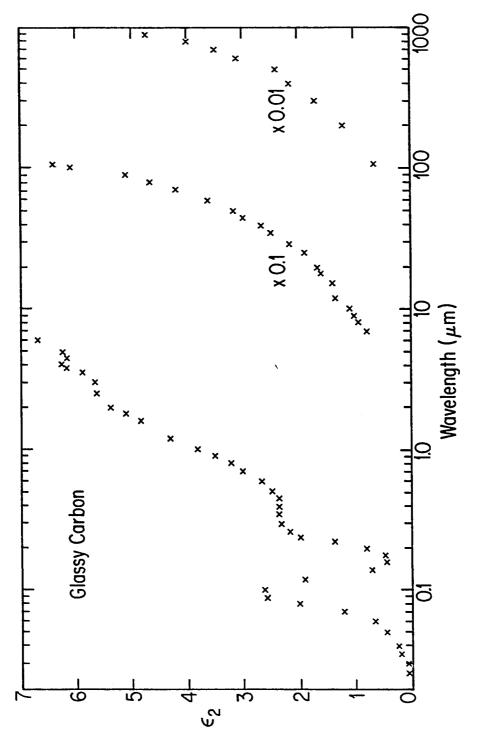
where R'(λ) is a relative reflectance; this data can be used in the Kramers-Kronig analysis computer program where it is converted into an absolute reflectance.

Reflectance from $\lambda \sim 0.35 \ \mu m$ up to 220 μm has been measured and good agreement obtained with Arakawa's published results in the 0.3 μm to 2.5 μm wavelength range which the experiments have in common. It was thus not

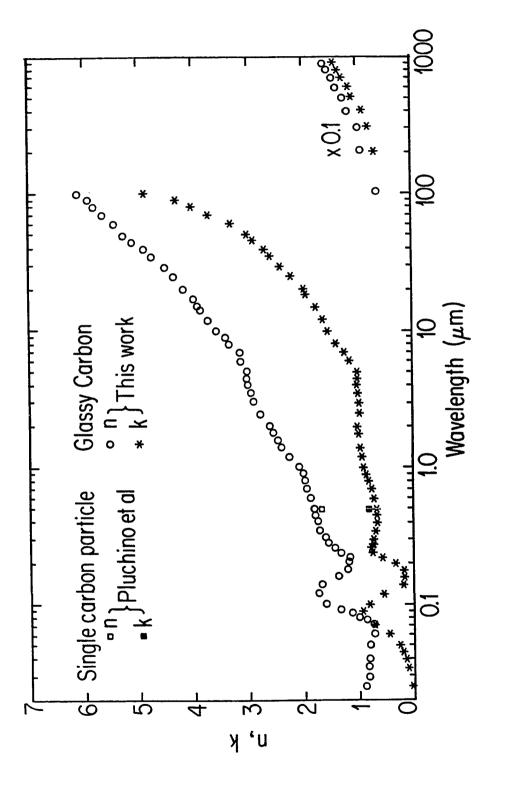
necessary to pursue measurements toward wavelengths shorter than 0.35 $\mu\text{m}.$

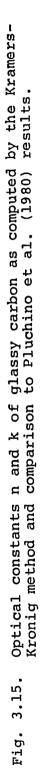

Data Analysis and Results

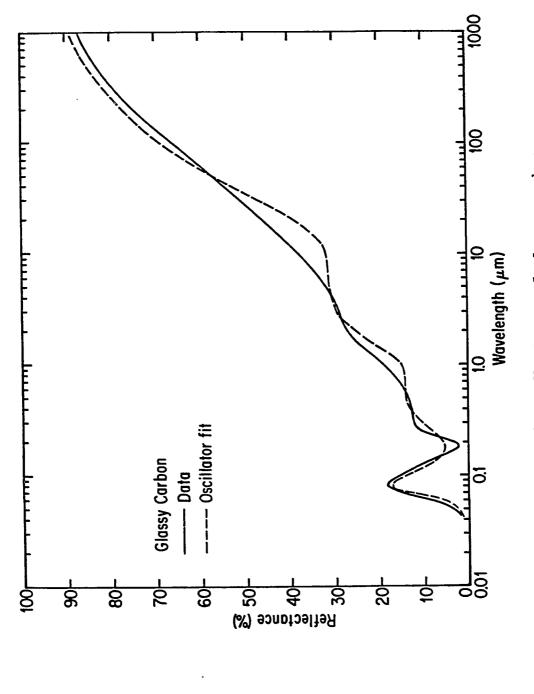
For use in the Kramers-Kronig analysis, reflectance was extended toward long wavelengths by curve fitting. Free electron behavior was assumed for glassy carbon at larger wavelengths than the last experimental point, and the Drude model used in the fitting. The parameters used were: $\omega_p = 2000 \text{ cm}^{-1}$; $\omega_j(1) = 0$, and $\gamma = 900 \text{ cm}^{-1}$. Reflectance data going from $\lambda \sim 0.02 \ \mu\text{m}$ to about 10⁶ μm were constructed by combining Williams and Arakawa's (1972) results, experimental results of this study, and extrapolated results, for use in the Kramers-Kronig analysis (see Fig. 3.4). The results of the analysis are presented in Figs. 3.13 to 3.15 and in Appendix A.


We then proceed to use the Drude-Lorentz model and fit the reflectance data obtained for the Kramers-Kronig study; the result is shown in Fig. 3.16, and the parameters used are presented in Table 3.6.

Discussion of Results


The reflectance data for graphite in the $E \perp C$ orientation and that of glassy carbon have been analyzed by the Kramers-Kronig method and by fitting a Drude-Lorentz model to the reflectance curves. The reflectance data for graphite in the $E \parallel C$ orientation has only been fitted





Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Parameter	Value (cm^{-1})
Oscillator l	ω _{Pl}	4000
	ω	0.00
	۲ _l	1000
Oscillator 2	^ω Ρ2	14.5×10^3
	ω2	5×10^{3}
	Υ ₂	9 x 10 ³
Oscillator 3	^ω ₽3	50×10^3
	ώз	30×10^{3}
	Υ ₃	43×10^{3}
Oscillator 4	^ω Ρ4	120×10^{3}
	^ω 4	110×10^{3}
	Υ ₄	60×10^3

Table 3.6. Oscillator parameters for the fit of the reflectance curve of glassy carbon.

because the spectral range of the data was not large enough to allow the use of the Kramers-Kronig method.

In all the fits, the oscillator strength parameters (ω_{Pj}^2) have been checked against the sum rule (see Kittel, 1976, p. 351 and Wooten, 1972, p. 72):

$$\int_{0}^{\infty} \omega \varepsilon_{2}(\omega) \ d\omega = \sum_{j} \omega_{Pj}^{2} = \frac{1}{2} \pi \omega_{P}^{2} . \qquad (41)$$

The plasma frequency $\omega_{\rm p}$ is given by (see Kittel, 1976, p. 289):

$$\omega_{\rm p} = \frac{4\pi {\rm n}{\rm e}^2}{{\rm m}} , \qquad (42)$$

where n is the density of electrons, e and m the charge and the mass of an electron in c.g.s. units. With the assumption that all the four valence electrons of carbon determine $\omega_{\rm p}$, one obtains:

$$k_{2}\pi \omega_{\rm P}^{2} \simeq 20.3 \times 10^{32} \, {\rm sec}^{-2}$$

The value of $\sum_{j} \omega_{Pj}^{2}$ for each case is given in Table 3.7. In each of the three cases

$$\sum_{j} \omega_{Pj}^{2} < \frac{1}{2}\pi \omega_{P}^{2}$$

Material	$\sum_{j}^{\sum} \omega_{Pj}^{2} \text{ (sec}^{-2}\text{)}$
Graphite: E L C	$\sim 4.4 \times 10^{32}$
Graphite: E // C	\sim 3.3 x 10 ³²
Glassy carbon	\sim 6.2 x 10 ³²

Table 3.7. Values of $\sum_{j} \omega_{Pj}^{2}$.

This result is expected, since the maximum possible value for n has been chosen for substitution in Eq. (42). Some valence electrons might be sufficiently bound that the sum rule (Eq. 41) is not satisfied over the frequency range of the experiment.

The discrepancy between the experimental and fitted curves observed between $\lambda = 0.3$ and 15 µm on Fig. 3.8 is due to interband transitions which come into play with increasing energy. These transitions gradually increase the reflectance without showing sharp peaks. The Lorentz model used for the fit cannot account well for this phenomenon. The fit of the peak at $\lambda \sim 45$ µm resulted in the sharp drop in the calculated reflectance.

The band structure of graphite as calculated by Mallett (1981) shows narrow band gaps at $\lambda \approx 0.08$ and 0.25 µm, which account for direct interband transitions, responsible for the sharp peaks observed at those wavelengths. These peaks were easily fitted.

Examination of Figs. 3.12 and 3.16 shows that to some extent, the reflectance of the E // C polarization for graphite and that of glassy carbon have the same behavior as the reflectance of the E \perp C orientation for graphite. This behavior makes the fit difficult between $\lambda = 0.3$ and 15 µm, but the difference between the experimental reflectance and the fit is unimportant because of the low reflectance of the materials considered.

Results obtained by the two methods of analysis for glassy carbon are compared in Table 3.8 for several wavelengths.

Comparing this Kramers-Kronig analysis with published data, one finds that for the E C orientation of graphite, the optical constants derived agree well with those of Taft and Philipp (1965) (see Table 3.9) and Greenaway et al. (1969). At the peak around $\lambda \sim 0.088 \mu m$, our value of 9.3 for ε_2 is higher than that of Taft and Philipp's (1965) value of \sim 7.0. The difference is due to the values of the parameters used in the short wavelength extrapolations for the Kramers-Kronig analysis (see p. 34).

The optical constants obtained for the E C orientation of graphite are to our knowledge the only consistent ones available at this writing.

The glassy carbon optical constants agree well with Williams and Arakawa's (1972) results and extend them beyond $\lambda \sim 10 \ \mu\text{m}$. Differences exist between our results and those published for varouis amporphous carbons as one can readily see in Fig. 3.1. One exception is the result of Pluchino et al. (1980) (see Fig. 3.15). The good agreement in this case is worth pointing out, even though the comparison is possible for one wavelength only. Our reflectance measurements were performed on a homogeneous bulk of glassy carbon sample. Pluchino et al. measured the scattered radiation by a single particle, small enough to be homogeneous. It is

Table 3.8. Results for index n and k obtained by the Kramers-Kronig method and by oscillator fit, in the case of glassy carbon.

			Wave:	length	(µm)		
	0.08	0.15	0.25	1.00	5.00	10.00	100.00
ⁿ OF	1.03	1.46	1.40	1.95	2.97	2.88	5.91
n _{KK}	1.04	1.54	1.40	2.15	3.04	3.56	6.09
^k OF	0.91	0.38	0.56	0.70	1.15	1.91	5.26
^k KK	0.95	0.19	0.74	0.90	1.03	1.54	4.85

The indices "OF" and "KK" stand for "Oscillator Fit" and "Kramers-Kronig," respectively.

Table 3.9. n and k from this work and those of Taft and Phillip (1965) and Philipp (1977) at the same wavelengths.

				Wave]	Length	(μm)		
	.1	.4	.5	.62	1.77	2	5	50
This	s work							
n	2.5	2.62	2.61	2.7	3.68	3.8	5.2	16
k	0.8	1.28	1.33	1.4	2.4	2.5	3.8	22
	t and Pl Philip							
n	2.4	2.52	2.54	2.6	3.78	3,9	5.1	15.8
k	0.75	1.35	1.36	1.46	2.49	2.6	4.0	22.8

strongly believed that the agreement of our results is due to the homogeneity of the materials on which the experiments were performed. To find optical constants of particles, many workers analyze reflectance data of particles pressed into pellets. Results obtained by this technique are rarely in good agreement for different samples. Chylek et al. (1981) argued that the differences are essentially due to the differing mass concentration of the particles. One reason we have chosen graphite and glassy carbon is because these materials are relatively homogeneous.

CHAPTER 4

SMALL PARTICLE EXTINCTION

This chapter deals with the extinction of small carbon particles. The production of the particles and their characterization are presented, and the sample preparation for the extinction measurements shown. Then the measurements leading to the mass calibration and to the extinction are described. Finally, results are presented and discussed.

Particle Production and Characterization

Graphite and three other types of carbon have been investigated. These powders are:

- 1. very fine graphite (Ashbury #250, Dixon),
- 2. standard lampblack,
- 3. particles (for solar energy absorption) produced by Hunt (1979) by acetylene pyrolysis at the Lawrence Berkeley Laboratory; those particles are referred to in this work as "LBL Smoke",
- particles were made by evaporating carbon in an inert gas atmosphere.

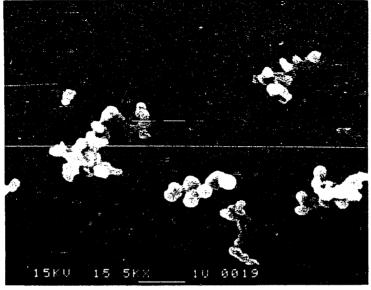
The chamber in which these particles were made was evacuated to 2×10^{-4} torr with an oil diffusion pump. The

system was then purged with helium to reduce the partial pressure of oxygen, and reevacuated. Finally the chamber, isolated from the pumping system, was filled with helium, and an arc was struck between carbon electrodes (glassy carbon). The particles were collected on appropriate substrates.

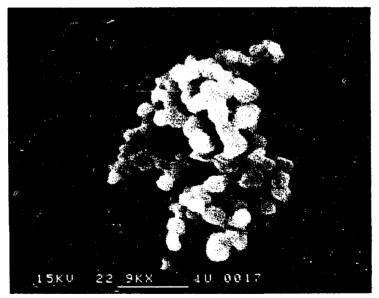

The particles were observed with a "Scanning Electron Microscope" (SEM) and/or a "Transmission Electron Microscope" (TEM). For this purpose a small amount of "LBL Smoke," lampblack, or graphite powder was added to methane and the mixture dispersed ultrasonically. The cloudy liquid was then put in a syringe adapted to a Nucleopore membrane filter holder and filtered. The filter retained the individual particles with diameter larger than its pores and also chain-like aggregates of particles. Samples prepared with this technique were observed with the SEM. Results shown in Figs. 4.1 and 4.2 confirmed what is commongly observed: spherical shape for most carbon and plate-like shape for graphite (Walker, 1963). The nucleopores used had 0.25 um diameter pores. Many of the particles presumably had smaller diameter than 0.25 $\mu\text{m}.$

Smoke made by arc evaporation of bulk glassy carbon was collected directly on grids for observation with TEM. Results showed that in this case, too, the particles are rather spherical, although not as perfect as observed for other particles (see Fig. 4.3). The heat generated by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

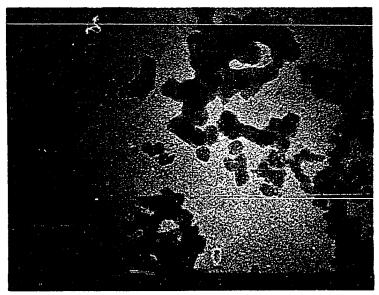


Graphite (Dixon, HPN-2)



Graphite (Ashbury, Micro #250)

Fig. 4.1. Scanning electron microscope view of two types of graphite particles.



LBL Smoke particles

Lampblack particles

Fig. 4.2. Scanning electron microscope view of "LBL smoke" particles and lampblack particles.

Glassy Carbon particles

Fig. 4.3. Transmission electron microscope view of glassy carbon with magnification 250KX.

electrons striking the samples during the observation process is probably responsible for the ragged edges (Walker, 1963).

X-ray powder patterns and electron diffraction patterns observed in the transmission electron microscope showed diffuse bands with little distinction between "LBL smoke," lampblack, and glassy carbon smoke. In contrast, the graphite showed distinct diffraction patterns. It was concluded that the first three are mainly amorphous while the graphite is highly crystalline.

Sample Preparation

The transmission measurements from which the extinction was determined required suspension of the particle in one way or another. When they were collected on a usable substrate such as quartz or LiF, no further sample preparation was necessary; otherwise, special particle suspension techniques had to be used.

For extinction measurements from the visible to the mid IR, the KBr pellet technique was used. A small amount of the particulates (typically 50 to 200 µg) was mixed with 0.5 mg of IR quality of KBr in a vial that contained a small steel ball. The mixture was first hand shaken and then shaken for 5 to 10 minutes on a "Wig-L-Bug" dental amalgamator. The mixture was then transferred to an evacuable die connected to a vacuum-pumping system and placed on a

hydraulic press. After evacuating for about two minutes, pressure was applied and slowly increased up to about 2000 lbs per square inch. The vacuum was maintained for two more minutes, then released, as air was slowly admitted to the system. Finally, the pellet was carefully extracted.

For the far IR extinction measurements, polyethylene powder was used as the dispersion medium; 0.1 mg of polyethylene was used in each vial. In this case, shaking a vial caused the mixture to stick to its wall because of electrostatic forces. To circumvent this problem, acetone was added to the mixture. The vial was hand shaken, slightly warmed, and left open overnight to allow the acetone to evaporate. The mixture was then scraped off the container walls and transferred to the KBr die. The die was heated on a hot plate during its evacuation. A gentle hand pressure was exerted on the plunger of the die at the beginning of the heating. Still under evacuation, the die was removed from the hot plate and slowly cooled. The pellet was then carefully removed, with the help of a razor blade, and weighed. If m, is the mass of the polyethylene, m₂ the mass of the particles with which the sample preparation was started, and m_3 the mass of the pellet obtained, then:

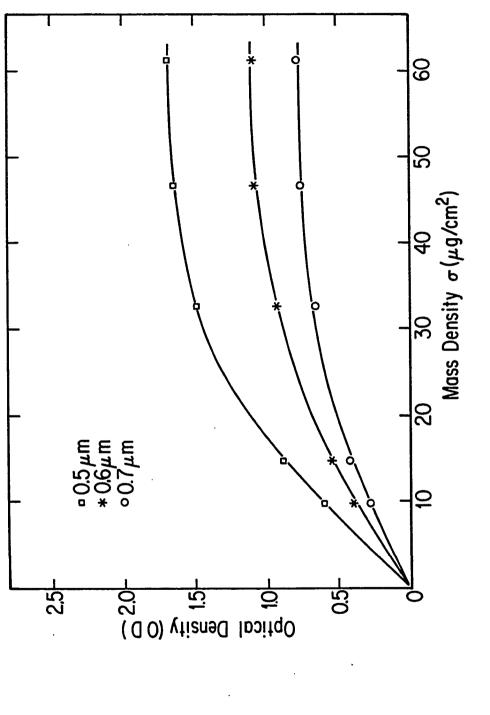
$$m \simeq \left(\frac{m_2}{m_1}\right) m_3$$

is approximately the mass of particles in the pellet.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Measurements

The instruments used to acquire data have been described earlier (see Chapter 3). With the Cary 14, a zero-absorption trace was recorded with two identical sample holders in the two beams. The sample was then inserted in the front beam and a reference blank was placed in the back beam. The spectrophotometer recorded the optical density (OD) as a function of the wavelength. The measuring technique on the Perkin Elmer was the same as on the Cary 14, except that the zero and the 100% lines had to be recorded. The spectra obtained gave intensities which permitted the calculation of the transmission.


The Beckman 11 was used in a one-beam mode. The transmission through the sample and the reference blank was measured separately. The absorption of the particles was found from the ratio of the two transmissions. The calculations of volume-normalized extinction (α) requires knowledge of the mass density σ (mass/area) of the particles. For the pellets used in IR, the mass of particles suspended in a matrix was large enough for weighing with an analytical balance. In the UV, the absorption of carbon particles is so high that a very small quantity of particles must be used to get any transmission. In that case, it was practically impossible to weight the particles; an optical calibration method was used to find σ .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A sufficient quantity of carbon smoke was collected on glass slides and the optical densities (OD) measured in the visible. Each slide was weighed with and without the smoke. Knowing the mass m of the particles on a slide, and the area A of the substrate, $\sigma = m/A$ was computed. Optical density was plotted as a function of σ for several samples of varying thickness, as shown in Fig. 4.4. The curve shows a leveling off of OD with increasing σ , presumably due to the increasing effect of multiple scattering. In order to avoid the multiple scattering region, the slope of the linear curve at small σ is used to determine a calibration constant (OD/σ) at each wavelength. This calibration can then be used to determine mass densities from optical transmission measurements for samples that are too light for conventional weighing techniques. By calibrating the mass density in the near infrared and the visible, optical measurements on very light samples (i.e., $5 \ \mu g/cm^2$) can be extended into the highly absorbing regions of the UV.

Results and Discussion

In this section, results of extinction measurements on graphite and amorphous carbon are presented and discussed with respect both to calculations and to other workers' results. This is done first for $\lambda > 0.4$ µm and then for $\lambda \leq 0.4$ µm.

In Fig. 4.5 are plotted the extinction results from graphite powders (Ashbury micro #250, Dixon HPN-2). On the same figure are plotted two sets of calculations, one based on a continuous distribution of spheres (CS) theory and the other on a continuous distribution of ellipsoids (CDE).

Although some workers argued that bulk optical properties may not be appropriate for micron-sized particles (Pluchino et al., 1980), the calculations were done using optical constants derived in Chapter 3, with the assumption that the particles are large enough for bulk optical properties to be applicable. A discussion of this point can be found in the review by Huffman (1977, pp. 212-215).

A comparison of the two calculated results shows a substantial difference in strength of the extinction in the infrared region from about $\lambda \sim 1.0 \ \mu m$ to 100 μm . This provides a quantitative illustration of how shape affects extinction of carbon particles in the infrared.

Visible and Infrared Range

Most of our studies on graphite were done on the Ashbury powder, which was available in large enough quantities to permit the preparation of many samples. Therefore, the discussion of graphite experimental results will be based on the Ashbury sample only.

Three sets of results were obtained (see Fig. 4.5). From $\lambda \sim 0.4$ µm to 25 µm, extinction of particles in KBr

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

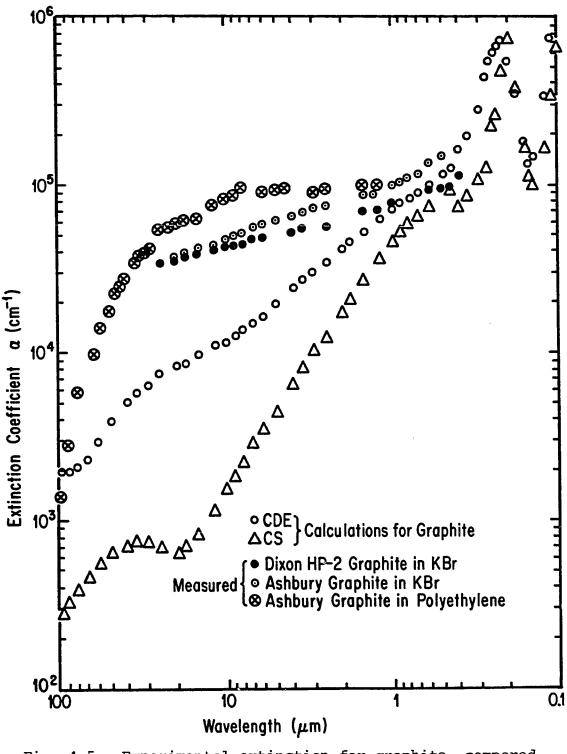


Fig. 4.5. Experimental extinction for graphite, compared to sphere theory (CS) and to CDE theory.

and extinction of particles in polyethylene are shown; above $\lambda \sim 25 \ \mu\text{m}$, extinction of particles in polyethylene only is presented. The polyethylene sample used from 0.4 μm to 25 μm was obtained from a pellet made by the technique described in the section on sample preparation, then thinned by exerting a slight pressure on the pellet placed between two microscope slides and heated. Comparison of the two results in the $\lambda \sim 0.4 \ \mu\text{m}$ to 25 μm range shows differences which are due to the suspension media used. On the one hand, the carbon particles mixed well with the KBr powder during the vial shaking process; on the other, the polyehtylene and the particles stick to the wall of the vial when shaken, as previously explained.

The observed disagreement of theory and experiment is most likely due to the inappropriateness of the ellipsoid theory. Figure 4.1 provides evidence that the graphite particles are in fact plate-like particles.

The particle shape is probably responsible for the violation of the sum rule shown in Eq. (40). Indeed, in a very restricted wavelength range (i.e., 5 μ m to 50 μ m),

 $\int \alpha \, d \lambda \simeq 65$

exceeding the maximum value which is 30.

Although this investigation was not planned as an illustration of the "shape effect," the comparison of experimental results to one another and to calculations has clearly shown the importance of the shape effect in extinctions.

Extinction of "LBL smoke" and lampblack was also investigated. Experimental results and calculations based on the same theories as for graphite are plotted in Fig. 4.6. Optical constants derived in Chapter 3 for glassy carbon have been used in the calculation. Extinction of fresh "LBL smoke" from $\lambda \sim 0.6 \mu m$ to 15 μm is pratically the same as predicted by the sphere calculations. This is not surprising since Fig. 4.2 shows agglomerated spheres. These chains and clusters were probably dispersed in the shaking process.

Pellets made of "LBL smoke" were measured fresh and also two years later; they gave almost exactly the same results as new pellets made of two year old "LBL smoke." Because of the old pellet results, the increase in "LBL smoke" extinction has been assigned to a change in the optical constants of the particles, rather than to the shape effect. The nature of this change is not yet well understood; a graphitization hypothesis has been discounted because x-ray studies of the two-year-old particles did not show any sharp lines.

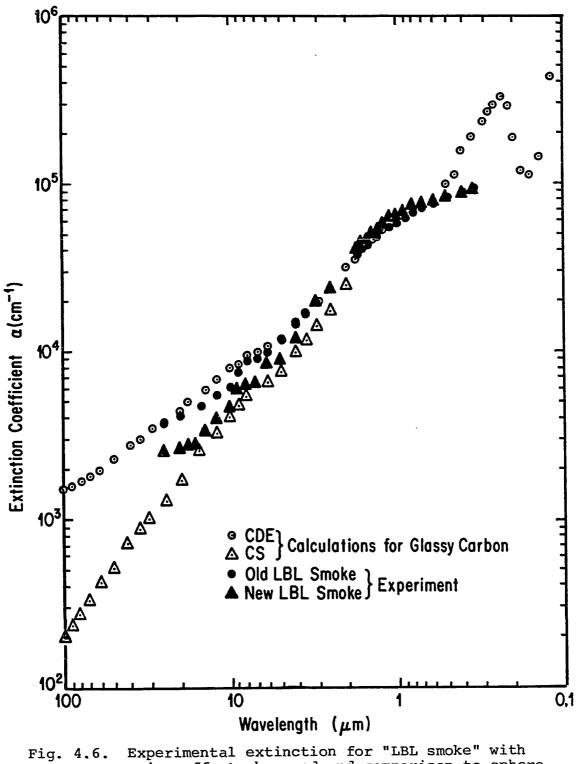


Fig. 4.6. Experimental extinction for "LBL smoke" with aging effect observed and comparison to sphere theory (CS) and to CDE theory.

Figure 4.7 shows that the lampblack extinction is higher than the highest "LBL smoke" extinction. The lampblack powder used might have experienced the same aging process as the "LBL smoke" and the difference in extinction might be due to a difference in the ages of the particles.

Koike, Hosegawa, and Manabe (1980) measured the extinction of arc evaporated graphite particles and particles produced by burning benzene and xylene in air. The measurements were performed from $\lambda \sim 0.21 \ \mu\text{m}$ to 340 μm on samples prepared with the same techniques as ours. They found humps between $\lambda \sim 5 \ \mu\text{m}$ and 15 μm (Koike et al., 1980). Our data confirmed the presence of these humps (see Figs. 4.5 and 4.6). Koike et al. also found a peak near $\lambda \sim 90 \ \mu\text{m}$. Neither the data of Blea et al. (1970) nor ours shows this peak. A broad peak found in our calculated result is located around $\lambda \sim 35 \ \mu\text{m}$ and is more apparent in the sphere calculations than in the CDE case (see Fig. 4.5).

Blea et al. (1970) measured absorption coefficients of black polyethylene over a broad spectral range ($\lambda \sim 2.5$ μ m to 3,300 μ m). Although their scattered results were assigned to differences in grain size, mass concentration of carbon in polyethylene, and to the form of the carbon, our extinction results from one type of carbon to another are due to differences in the shapes of the particles.

Table 4.1 shows experimental results of this study and those of other workers at some specific wavelengths.

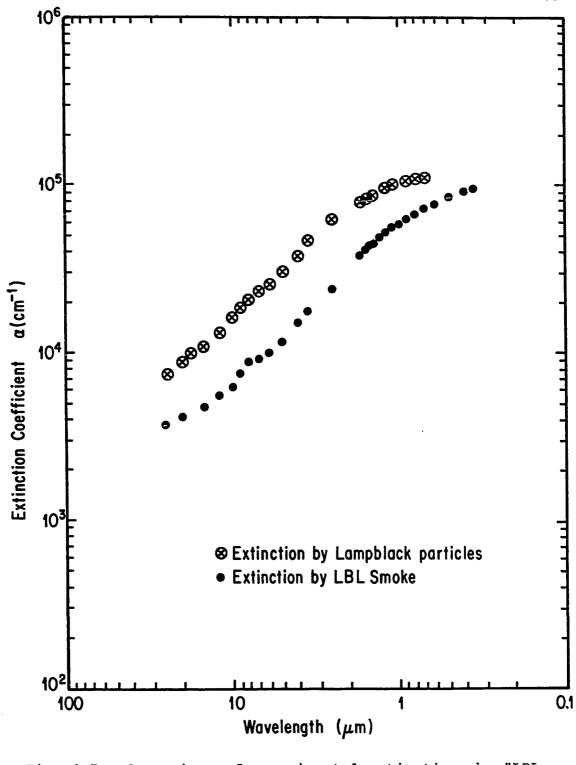


Fig. 4.7. Comparison of experimental extinctions by "LBL smoke" and by lampblack.

Table 4.1.	Measured	extinction coefficients at some wavelengths.	avelengths.	
		α (cm ⁻¹)		
Authors	Samples	<u>λ ∿ 0.5 μm λ ∿ 5 μm</u>	λ ∿ 10 µm	Comments
This work	Ashbury Graph- i+= #250	145×10^3 51 × 10^3	47 x 10 ³	Particles in KBr
	LBL Smoke	83 x 10 ³ 11.5 x 10 ³	6.2 x 10 ³	Particles in KBr
Koike et al.	. Arc evaporated	225 x 10 ³ 22.5 x 10 ³	15 x 10 ³	
(00/1)	Lampbl Lampbl	188 x 10 ³ 15 x 10 ³	8.25 x 10 ³	Combustion in air
	Lampblack from xylene (XY)	112.5 x 10 ³ 8.25 x 10 ³	6.0 x 10 ³	Combustion in air
Blea et al.	USIC		22.5 x 10 ³	Black poly-
(n/ ft)	DOW	∿ 24 x 10 ³	15 x 10 ³	ethylene

Ultraviolet Range

For short wavelengths the Rayleigh approximation, on which the sphere and CDE calculations are based, is hardly valid. A switch to Mie calculations is then necessary. Although the particles are not individual spheres or spherical at all (graphite), the calculations can give a rough basis for the evaluation of the experimental results.

Experimental results and calculations are shown in Figs. 4.8 and 4.9 for Ashbury graphite and glassy carbon, respectively. It might be surprising that the glassy carbon extinction peak is higher than the graphite one. It has been shown (Rathmann, 1981; Foxvog and Roessler, 1978) that the extinction out of the Rayleigh limit range is radius dependent, and that very fine particles have a higher peak. The graphite used was acquired as a finished powder with rather large particle sizes. The glassy carbon particles were arcevaporated in helium atmosphere, a technique known for producing very fine particles (Rathmann, 1981). Also the particles were lightly deposited on the substrate to limit their agglomeration.

The graphite particles might obey some kind of sum rule by which the loss of strength in extinction observed between $\lambda = 0.22 \ \mu m$ and 0.24 μm is compensated by the high extinction in the infrared region.

The strength of the experimentally found peak for glassy carbon is rather close to the peak calculated by

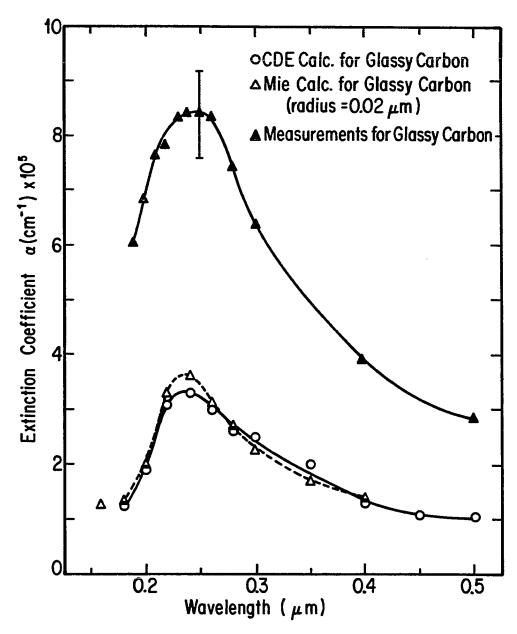


Fig. 4.8. Comparison of experimental extinction to calculated extinctions for glassy carbon around $\lambda \sim$ 0.22 µm.

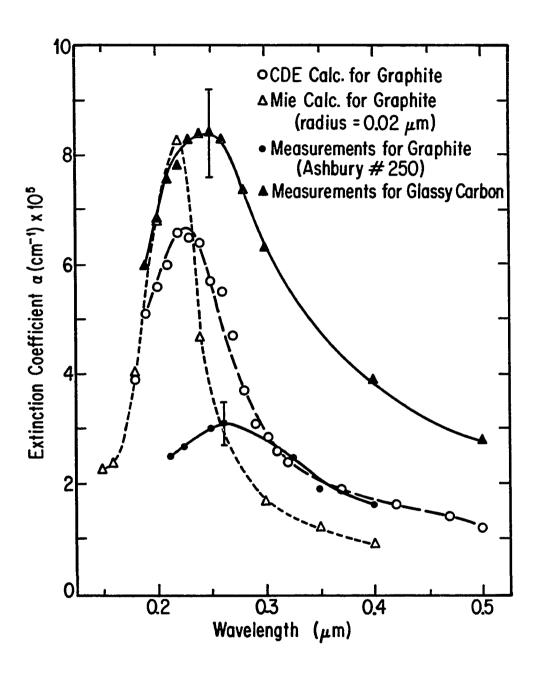


Fig. 4.9. Comparison of experimental extinctions for graphite and glassy carbon to calculated extinctions for graphite around $\lambda \sim 0.22 \ \mu m$.

by the Mie method for graphite (see Fig. 4.9). Although it is known that glassy carbon cannot be significantly altered by heat treatment (Halpin and Jenkins, 1969), the strength of the peak is a good basis for arguing that the particles have graphitized in their production process.

CHAPTER 5

SUMMARY AND CONCLUSION

Reflectance data for graphite for the E \perp C orientation and for glassy carbon were compiled from the literature and augmented by our own measurements and/or extrapolations. They were analyzed by the use of the Kramers-Kronig method to yield consistent optical constants over a wide spectral range. For glassy carbon, our results are, at this writing, the only ones available beyond $\lambda \sim 10 \ \mu\text{m}$.

It was also shown that the homogeneity of the material on which measurements (reflectance, extinction, etc.) are performed is an important factor in obtaining dependable results.

Optical constants obtained for graphite for the E // C orientation by optical and by electron energy-loss methods over a broad (0.05 to 100 μ m) spectral range have been combined to give more realistic results than could be provided by each method separately.

Fitting the reflectance data of graphite and glassy carbon to a Drude-Lorentz model was complicated by the existence of interband transitions which increase the reflectance without showing sharp peaks. But except for

the case of the $E \perp C$ polarization of graphite, the difference between experiment and fit was unimportant because of low reflectances; good results were thus obtained with this method over the spectral range.

Differences exist between experimental and calculated extinctions by small carbon particles. High experimentally observed extinctions are either due to a shape effect as observed with graphite, or to an aging process as noticed with the other types of carbon particles. The preparation of small particles by arc evaporation of bulk glassy carbon tends to graphitize the particles, thus enhancing the extinction. This effect was observed around $\lambda \sim 0.22 \ \mu m$ for particles which were nominally glassy carbon (see Fig. 4.9).

The poor agreement between experiment and calculations leads to the conclusion that current models are not adequate for predicting extinctions by small carbon particles over a large spectral range. However, the empirical results provided by this work should be useful in designing projects like the solar energy collector conceived by Hunt (1979).

More experimental work should be done in order to reconcile the optical constants for graphite for the E H C orientation, as measured by optical and electron energyloss techniques. The aging process and the graphitization

of the particles observed in this work need to be studied further and quantified.

Progress in reconciling experimental and theoretical extinctions by small carbon particles will probably depend on how well changes in the particles are understood and incorporated in calculations; it will also depend on the existence of theories which can properly deal with the shape of the particles.

APPENDIX A

TABULATION OF THE OPTICAL CONSTANTS OF GRAPHITE AND GLASSY CARBON

λ (μm)	N	K	λ(μm)	N	K
0.050	0.381	0.313	1.200	3.180	2.000
0.055	0.390	0.543	1.500	3.430	2.180
0.060	0.400	0.850	1.800	3.700	2.430
0.065	0.500	1.150	2.000	3.830	2.520
0.070	0.650	1.330	2.500	4.300	2.750
0.075	0.850	1.700	3.000	4.300	2.950
0.080	1.600	2.000	3.500	4.480	3.330
0.085	1.900	2.450	4.000	4.730	3.550
0.090	2.600	1.650	4.500	⇒.030	3.730
0.095	2.630	1.350	5.000	5.23 0	3.830
0.100	2.400	0.900	6.000	5.400	4.030
0.110	2.150	0.500	7.000	5.400	4.450
0.120	1.900	0.130	8.000	5.7 00	4.950
0.125	1.700	0.100	9.000	5.980	5.250
0.140	1.470	0.130	10.000	6.100	5.550
0.150	1.100	0.160	12.000	6.140	6.850
0.160	0.980	0 .2 80	15.000	6.250	8.000
0.180	0.830	0.650	18.000	6.550	9.000
0.200	0.800	1.200	20.000	6.750	· 11.000
0.220	0.850	2.000	25.000	7.500	13.000
0.240	1.200	2.400	30.000	3.500	15.500
0.250	1.600	2.450	35.000	10.000	18.500
0.260	2.100	2.650	40.000	11.500	20.500
0.270	2.550	2.430	50.000	16.500	23.500
0.300	2.700	1.700	60.000	20.700	22.000
0.350	2.620	1.360	70.000	22.500	19.300
0.400	2.610	1.240	83.000	21.500	18.900
0.450	2.600	1.250	90.000	20.000	18.800
0.500	2.600	1.370	100.000	18.300	21.300
0.600	2.700	1.300			
0.700	2.750	1.480			
0.00	2.850	1.630			
0.900	2.920	1.740			
1.000	3.000	1.600			

Table A.1. Optical constants of graphite for the E \perp C polarization.

λ (μm)	N	К	λ (µm)	N	К
0.050	0.980	0.360	1.200	1.400	0.100
0.055	0.950	0.420	1.500	1.400	0.100
0.060	0.850	0.480	1.800	1.470	0.100
0.065	0.800	0.600	2.000	1.500	0.100
0.070	0.790	0.780	2.500	1.600	0.150
0.075	0.833	0.833	3.000	1.730	0.15 0
0.080	0.940	0.950	3.500	1.860	0.150
0.085	0.960	1.05	4.000	1.900	0.150
0.090	1. 30	1.200	4.500	2.060	J .150
0.095	1.150	1.450	5.000	2.200	0.150
0.100	1.300	1.600	6.000	2.350	0.150
0.110	2.200	1.900	7.000	2.410	0.150
0.120	2.700	1.400	8.000	2.400	0.150
0.125	2.800	1.000	9.000	2.398	0.150
0.140	2.500	0.450	10.000	2.396	0.150
0.150	2.230	0.250	12.000	2.330	0.170
0.160	2.100	0.190	15.000	2.250	0.200
0.180	1.600	0.130	18.000	2.150	0.270
0.200	1.220	0.150	20.000	2.050	0.350
0.220	1.100	0.200	25.000	1.930	0.580
0.240	0.940	0.120	30.000	1.920	0.850
0.250	1.000	0.240	35.000	2.000	1.070
0.260	1.050	0.230	40.000	2.080	1.240
0.270	1.120	0.100	50.000	2.200	1.630
0.300	1.250	0.110	60.000	2.300	1.930
0.350	1.370	0.100	70.000	2.430	2.150
0.400	1.400	0.100	80.000	2.540	2.400
0.450	1.370	0.100	90.000	2.630	2.550
0.500	1.330	0.100	103.000	2.700	2.70
0.600	1.300	0.100			
0.700	1.300	0.100			
0.800	1.300	0.100			
0.900	1.300	0.100			
1.000	1.350	0.100			

Table A.2. Optical constants of graphite for the E // C polarization.

Table A.3.		Optical constants	i	and extinction coefficients	of	graphite.
(און) א	ε 1//	£ 2/	TI 3	T z 3	$\alpha_{\rm CS}$ (cm ⁻¹)	$\alpha_{\rm CDE} (cm^{-1})$
2	30	02	1 4	1 m	359E	1766+0
ŝ	26	98	J.	42	139E	341E+0
Ś	92	16	• 56	68	062Ë	853E+0
.065	.2800	.9600	-1.0725		.3511E+07	.21436+37
~	GI0	.232	1.34	• 72	320E	0+3442
~ ~	000	87	• 16	83	322E	12E+U
8	.018	. 786	3.00	00.	700E	3186+0
Ø	.180	.016	2.39	.31	J 8 2 E	035E+U
σ	.37	.472	• 03	• 5 6	190E	407E+0
5	.780	.335	• 0 •	07.	044E	2546+0
0	.870	.160	6 6.	.32	052E	028E+J
-	.230	.360	.37	. 15	4 1 J E	065E+0
2	.330	. 560	• 59	49	563Ē	426E+0
2	.840	.600	• 88	34	200E	409E+0
. +	.300	.295	.14	Э₿	OTTE	432E+0
ŝ	.910	.115	.16	35	149E	330E+0
Q	37	798	.8620	-	730E	822E+J
30	. 543	16	26	• 07	796E	4 54E+0
0	.465	66	. 80	. 92	3446	535E+0
2	.170	40	27	40	785E	322E+0
\$.965	37	•32	• 76	557E	625E+J
ŝ	94	480	3.44	• 8 4	268E	9446+0
Q	• 0 4 9	83	.61	.13	666E	377E+U
2	•244	24	0	2.49	222E	2576+0
0	.550	75	• 40	9 7 •	0 j 7 E	770E+U
ŝ	.866	74	.01	-12	6 3 b E	983E+0
0	.950	80	.27	.47	275E	603E+0
ŝ	.866	74	• 19		908E	224E+0
0	.758	6 Ó	4.6831	.12	554E	201E+0
0	.630	60	• 38	• 4 5	552E	0-1000
Ο	68	60	.37	• 1 4	609E	9736+0

.

$\lambda (\rm lim) E_1/r E_2/r E_1L E_2L \alpha_{\rm CS} (\rm cm^{-1}) \alpha_{\rm CDE} (\rm cm^{-1}) \\ = 900 1.6800 2600 5.4656 9.2910 5830E+U5 .84094E405 \\ = 7000 1.68125 2700 5.17601 10.41020 .1144EE+U5 .7225E405 \\ = 1.000 1.8125 2700 5.17601 10.41020 .3226EE+U5 .61226E+U5 \\ = 1.000 1.9500 2800 7.0125 11.9480 .2011EE+U5 .61226E+U5 \\ = 1.000 2.5375 .7800 10.9275 23.6500 .1729EE+U5 .9326E+U5 \\ = 2.000 2.5375 .7800 10.9275 23.6500 .1209EE+U5 .9326E+U5 \\ = 2.000 2.5375 .7800 10.9275 23.6500 .1209EE+U5 .9326E+U5 \\ = 2.000 2.5375 .9300 10.9275 23.6500 .1209EE+U5 .21806E+U5 \\ = 2.000 2.5375 .9300 10.9275 23.6500 .1209EE+U5 .21806E+U5 \\ = 2.000 2.5375 .7800 10.9275 23.6500 .1209EE+U5 .21956E+U5 \\ = 2.000 2.5375 .7200 9.7704 33.5330 .06472E+U4 .1259EE+U5 \\ = 2.000 5.7279 .7190 12.5644 43.71E+U4 .1259EE+U5 \\ = 2.000 5.7279 .7200 12.6447 .1207E+U4 .1259EE+U5 \\ = 2.000 5.7279 .7200 12.6447 .1207E+U5 .1176E+U5 \\ = 2.000 5.7279 .7200 .2226EE+U4 .1270EE+U5 \\ = 2.000 .21375 .7200 .2226EE+U4 .12706E+U5 \\ = 2.000 .2635EE+U4 .12709 .12706E+U5 \\ = 2.000 .2635EE+U4 .12709E+U5 \\ = 2.000 .26326E+U4 .12709E+U5 \\ = 2.000 .26326E+U4 .12709E+U5 \\ = 2.000 .26326E+U4 .12709E+U5 \\ = 2.000 .2.655 .7200 .21040+U3 .1255E+U4 \\ = 2.000 .2.655 .7200 .21040+U4 .12706E+U4 \\ = 2.000 .2.655 .7200 .21040+U6 .1276E+U5 \\ = 2.000 .2.655 .7200 .21040+U4 .12706E+U4 \\ = 2.000 .2.655 .7200 .21040+U4 .1276E+U5 \\ = 2.000 .2.655 .2200 .21040+U4 .1276E+U5 \\ = 2.000 .2.655 .2200 .21040+U4 .1255E+U4 \\ = 2.0500 .2.655 .2200 .21040+U4 .1255E+U4 \\ = 2.0500 .2.655 .2000 .20000 .77426E+U4 .1276E+U4 \\ = 2.0500 .2.655 .20000 .7246E+U4 .2726E+U4 \\ = 2.0500 .2.655 .2000 .20000 .7246E+U4 .2726E+U4 \\ = 2.0500 .2.655 .200000 .77040 .26970E+U4 \\ = 2.0500 .2.655 .200000 .77040 $	Table A.3.	Optical con (continued)	constant led).	s and ext	Optical constants and extinction coefficients (continued).	fficients of	graphite
800 1.6800 $.2600$ 5.4656 9.2910 $.5830E+U5$ $.8409E+05$ 700 1.6800 $.2600$ 5.4968 10.1616 $.5142E+05$ $.7425E+05$ 200 1.9500 $.2800$ 5.7496 1124 12.7200 $.22649E+05$ $.5127E+05$ 500 1.9500 $.2800$ 7.0125 117.49548 $.22649E+05$ $.6327E+05$ 500 2.1509 $.29400$ 7.70125 117.49548 $.226490$ $.4572E+05$ 500 2.1509 $.29400$ 7.70125 117.49548 $.2294905$ $.4572E+05$ 500 2.25400 $.29704$ 0.92752 $.43000$ 10.9275 $.2794295$ 500 2.52400 0.7215 0.92522956490 $.279566490$ $.279566490$ 500 2.5910 10.9275 22.253890 $.27709$ $.29566490$ $.245266490$ 500 4.22211 $.61800$ 11.3880 37.2238 $.29566490$ $.245266490$ 500 4.22719 57800 12.98967 0.90018 43.712409 $.245266490$ 500 4.22719 57800 12.98975 57.7700 245266490 $.1270640$ 500 5.5000 12.9890 0.90518 0.27376 0.27376 0.27376 500 5.7779 7194 0.22366400 0.1270640 0.245266400 0.1270640 500 5.7779 729266700 0.22366700 0.27376000 0.27376000 0.273760000 50000 5.77790 7.987279000	(u			T13	T23	$\alpha_{\rm CS}$ (cm ⁻¹)	$\alpha_{\text{CDE}} (\text{cm}^{-1})$
900 1.6800 $.2600$ 5.4968 10.1616 $.51d2E+05$ $.7d25E+0$ 2000 1.8125 $.2700$ 5.7600 $1.0.8000$ $.4576E+05$ $.642276+05$ 2000 1.9500 $.2800$ $7.7b51$ 17.49540 $.20449E+05$ $.642276+05$ 2000 2.9400 $.2800$ $7.7b51$ 17.49540 $.20449E+05$ $.4572E+05$ 2000 2.2400 $.29400$ $.29400$ $.29400$ $.294607$ $.4572E+05$ 2000 2.25375 $.4300$ 10.9275 23.55000 $.1723E+05$ $.44572E+05$ 5000 2.7400 $.2794800$ $.2794800$ $.2794800$ $.2794800$ 5.7700 3.4371 $.573300$ $.1723E+05$ $.2794800$ $.2794800$ 5.7700 3.43700 $.10112E+05$ $.2794800$ $.2794800$ 5.7200 3.4375 40.0518 $.43714200$ $.2754600$ 5.7200 5.7230 9.7704 $.920386+00$ $.1453566+00$ 5.7279 57375 54.4300 $.225466+00$ $.125566+00$ 5.7279 77330 93775600 $.225466+00$ $.125566+00$ 0000 5.7279 0.7194 $0.97386+00$ $.127660$ 0000 5.7279 0.7194 $0.975566+00$ $.12766600$ 0000 5.7279 0.7220 0.91000 $0.925566+00$ $.127666600$ 0000 5.7279 0.92000 0.92000 $0.92366+00$ $0.92366+00$ 0000 5.7279 0.92725	. 800	.680	.2600	40	.291	830E+U	409£+0
0001.8125.2700 5.7600 10.4000 $45486+05$ $712926+05$ 5001.9500.2800 6.1124 12.7200.36266+05 $55276+0$ 5002.1509.2900 6.1124 17.952.26496+05 $55276+0$ 5002.5375.430010.927523.6500.17236+05.41576+05002.5375.430010.927523.6500.12096+05.52966+055002.5375.430010.927523.6500.12096+05.279866+055002.9704.51909.787525.5300.12096+05.24506+055002.9704.51909.787525.5338.90356+04.24526+055004.0211.618011.3793.37.5234.22656+04.14536+065.70012.919143.5240.34146+04.14536+06.24536+065.70012.919143.5240.28566+04.12396+04.14536+065.7005.70012.919143.5240.24536+04.11336+060005.7719.77969.357556.4300.24536+04.11276+040005.77183.77194112.7900.12356+04.12336+04.12356+0400005.77183.7718.77100.11476+04.11236+0400005.77183.7718.7730.95975.177.9000.12776+0400005.77183.7718.7738+04.12776+04.11276+0400005.77183.7716.125990.27886+03 <t< td=""><td>900</td><td>.680</td><td>. 2600</td><td>•</td><td>;</td><td>1 d 2 E + 0</td><td>025E+U</td></t<>	900	.680	. 2600	•	;	1 d 2 E + 0	025E+U
200 1.9500 $.2800$ 6.1124 12.7200 $.36266405$ $.63296400$ 7.0125 14.9548 $.26496405$ $.5227640$ 7.7651 7.7651 17.9820 $.201646405$ $.5227640$ 7.7650 $.28000$ 7.7651 17.9820 $.201646405$ $.5227640$ 7.7650 $.29706$ $.30000$ 8.9815 23.65200 $.4157640$ 5.5190 $.51900$ 9.7704 33.58300 $.100116405$ $.2455640$ 5.6000 2.9706 $.51900$ 9.7704 33.58300 $.10116405$ $.2455640$ 5.6000 2.9706 $.51900$ 9.7704 33.58300 $.00956404$ $.2455640$ 5.6000 2.97375 $.25300$ 12.9191 $.437144404$ $.12596640$ 5.6000 5.7279 $.7200$ 12.9191 $.43714404$ $.12596640$ 60000 5.7279 $.7200$ 12.9191 $.43714404$ $.12596640$ 60000 5.7279 $.7200$ 7.9875 $.92036404$ $.11336610$ 60000 5.7279 7200 12.911160 $.125766404$ $.12566640$ 0000 5.7279 7194 8.1975 $.6777100$ $.125766404$ 0000 5.7279 $.7200$ 12.911160 $.125766404$ $.125766404$ 0000 5.7279 $.7200$ $.1264756404$ $.125666404$ $.125666404$ 0000 5.7279 $.72866400$ $.6722666404$ $.125666404$ $.1256666400$ 0000 $.203640000$.000	.812	.2700		5	548E+0	50E+0
5001.9500.28007.012514.9548.26496+05.52276+060002.1509.29704.30008.318519.3032.17238405.44576+060002.9704.519010.927523.6500.10116+05.238664060002.9704.51909.770433.5830.64726+04.27546460003.4371.55809.770433.5830.64726404.245264060003.4371.55809.770433.5830.64726404.245264060005.7875.660012.684040.0601.26452640.245264060005.7875.660012.684040.0600.2266640.1255664060005.7875.72307.987556.4300.22266640.1255664060005.7783.71948.197362.7900.18196640.125664000005.7783.7718.62.7900.25266640.1256640.125664000005.7783.71948.197362.7900.18136640.125664000005.7783.7194.1277900.23566640.1256640.125664000005.7783.7793.7793.17748.1256640.125664000005.7783.77648640.125640.27556640.1256670.2756664000005.7783.77648640.125673840.1257690.275556640.12565556666600005.7783.77648640.127768.27566640.12577666600000 <td></td> <td>- 6 - 6</td> <td>.2800</td> <td></td> <td>N.</td> <td>3626E+U</td> <td>296+0</td>		- 6 - 6	.2800		N.	3626E+U	296+0
8002.1509.29407.785117.9820.2011E400.4572E4050002.5375.430010.927523.6500.1723E405.4157E4050002.9704.51909.787523.6500.1209E405.2786E4050002.9704.51909.777523.5500.1723E404.2754E4050003.4371.558009.770433.5830.6475E404.2754E4050003.4371.558009.770433.5238.5755E404.2755E4050004.8175.5785612.919143.524034.14E404.14556E40660012.684040.0618.4371E404.1456E40.1409E40660012.919143.524034.14E404.1409E4066005.7856.72309.357544.06600.22266E404.1409E406677319.71948.197362.74900.11849E404.11706E4000005.7279.71948.197365.77900.22266E404.14795E4000005.7789.71948.197365.77900.12768E404.11766E40300005.7789.7183.7792.9936E403.9936E403.12768E40300005.7789.7183.7793000.127782E403.12768E403.74535E40300005.7789.7183.77732.93266E403.74535E403.127768E40300005.7789.9000.75530000.75535403.27535403.24556640300002.9539.7183.71720<	•	- 4 5 6	.2800	<u></u> .	4	496+0	227ē+0
000 2.2400 .3000 6.3185 19.3032 $.17236+05$ $.44576+0$ 500 2.9704 $.5190$ 9.7875 23.6500 $.12096+05$ $.33866+05$ 500 3.4371 $.5580$ 9.7704 $.5136500$ $.27966+06$ $.27966+06$ 500 3.4371 $.5580$ 9.7704 33.5830 $.64726+04$ $.275646$ 500 3.8191 $.55800$ 9.7704 33.58330 $.64726+04$ $.24526+06$ 6000 5.7860 12.9191 5840 40.001318 $.43712+04$ $.145966+06$ 6000 5.7875 664726 34.12600 $.22566+04$ $.145966+06$ 0000 5.7790 7.9875 56.4300 $.22266+04$ $.145966+06$ 0000 5.77183 6.4075 56.4300 $.22266+04$ $.11366+06$ 0000 5.7719 77230 9.35740 $.12376+04$ $.112696+06$ 0000 5.7719 7798 $.0000$ $.22266+04$ $.11766+04$ 0000 5.7719 $.7194$ $.12700$ $.12375$ $.11766+04$ $.112766+04$ 0000 5.77183 $.71936+06$ $.1176900$ $.69306+03$ $.877956+04$ 0000 5.7183 $.71936$ $.127696+03$ $.745326+04$ $.114766+04$ 0000 5.7183 $.71936+000$ $.127706-03$ $.9749296+04$ 0000 5.7183 $.71286+04$ $.11769000$ $.693066+03$ 0000 $2.22388-11267000$ $.695066+03$ $.749326+04$ <trr< td=""><td></td><td>. T 5</td><td>. 2940</td><td>2</td><td>2.</td><td>11E+0</td><td>572E+0</td></trr<>		. T 5	. 2940	2	2.	11E+0	572E+0
500 2.5375 .4300 10.3275 23.6500 .1209E405.3386E40 5704 5190 9.7877 25.3700 .1011E405.2452E40 5700 3.4371 5560 8.9815 $2452E40$ $2452E40$ 5700 3.8191 5580 9.7704 33.5830 $6072E640$ $2452E40$ 5700 4.2211 $.66100$ 11.3880 37.5234 $.2003E6404$ $.2180E406$ 5000 5.5600 12.6840 40.06018 $.4437Le444$ $.1459E406$ 77200 729191 43.52400 $.2836E404$ $.1595E406$ 77200 779194 8.1977 65.77900 $.22226E6404$ $.1270E406$ 0000 5.77875 56.77000 $.22226E6404$ $.1270E406$ 0000 5.77100 $.124.9575$ $.117.9000$ $.83756E404$ $.1276E404$ 0000 5.7783 $.792229$ $.34.11600$ $.1147E404$ $.1133E400$ 0000 5.7783 $.79236E400$ $.1276576404$ $.1270E404$ $.11756576404$ 0000 5.7783 $.792366400$ $.222466404$ $.12766404$ $.12766404$ 0000 5.7783 $.79236400$ $.1276556404$ $.12766404$ $.127666403$ 0000 5.78864 $.77230$ $.742556404$ $.117769404$ $.117769404$ 0000 $.79236400$ $.127692000$ $.775556404$ $.12776566403$ $.745756404$ 0000 $.2863066400$ $.276864000$ $.77555000$ $.745756403$ $.745756403$ <		.240	.3000	ີ. ອີ	9.3	1723E	157E+0
000 2.9704 $.5190$ 9.787 25.3700 $.101116+05$ $.29866+0$ 500 3.4371 $.5580$ 8.9815 29.8303 $.64726+04$ $.24526+0$ 500 3.8191 $.5880$ 9.7704 33.5334 $.02036+04$ $.24526+0$ 500 4.2211 $.6180$ 11.3880 37.5234 $.02036+04$ $.24526+04$ 500 4.2211 $.6600$ 12.68440 40.0618 $.43716+04$ $.145366+04$ 000 5.7856 $.7230$ 9.3575 44.06600 $.22646+04$ $.145366+04$ 000 5.77375 $.7230$ 9.3575 44.06600 $.222466+04$ $.14096+06$ 000 5.77375 $.7230$ 9.3575 44.06600 $.222466+04$ $.12706+06$ 0000 5.77183 $.792375$ 100.0000 $.11476+04$ $.11706+06$ 0000 5.77183 $.79236$ $.99386+00$ $.99386+00$ 0000 5.77183 $.79236$ $.99366+00$ $.125766+00$ 0000 5.77183 $.79236$ $.99366+00$ 0000 $.792279$ $.940000$ $.12776+04$ $.11776+04$ 0000 $.79236$ $.9736+000$ $.87566+00$ 0000 2.9639 -1122.7500 195.0000 $.877556+00$ 0000 2.9639 -126000 $.77436+003$ $.877566+00$ 0000 2.9639 $-126640-10600$ $.77436+033$ $.74536+003$ 0000 2.9639 $-223840-103000$ $.77436+033$ $.74536+033666-0$.537	.4300	0.9	3 • 6	1209E	386E+0
5003.4371.55808.981524.830.6472E+04.2754E+045003.8191.58809.770433.5830.6472E+04.2452E+065004.2211.618011.388037.5238.203E+04.2452E+0660012.618011.388037.5238.203E+04.2452E+066005.5000.705012.919143.5240.3414E+04.1556E+06705072309.357544.06600.22836E+04.1556E+0671948.197355.4300.2225E+06.1270E+067193771948.197362.77900.1819E+04.1270E+0670005.7279.72309.357544.0600.2225E+04.1270E+0670105.7183.711846.407555.7100.1255E+04.1270E+0670105.7183.711846.407555.7100.1255E+04.1270E+0670105.7183.77186.407555.77100.1255E+04.1270E+0670105.7183.7793.7148.5000.1255E+04.1176E+04.1133E+0470105.7183.7436.17700.8323E+03.8756E+04.1270E+0370102.72591.48.5000.65323E+03.7753E+03.7753E+0370102.78685.1584.280000.775.5000.7755E+03.7453E+0370102.78885.1584.280000.775.5000.77555E+03.7453E+0370102.78885.1584.2800000.775.5000.7755500<		.970	.5190	9.7	5.	1011É	9885+0
0003.8191.58809.770433.5830.6472E+04.2452E+05004.2211.618011.388037.5234.9203E+04.2180E+0640012.684040.0618.4371E+U4.1953E+00005.500012.919143.5240.3414E+U4.1556E+00005.78567.987556.4300.2226E+04.1536E+00005.78567.987556.4300.2226E+04.1270E+00005.77198.197362.7700.1819E+U4.1270E+00005.7183.71948.197362.7700.1936E+04.1176E+00005.7183.71948.197362.7700.1270E+03.1270E+00005.7183.71948.197362.7700.1147E+04.1176E+00005.7183.711610-38.0575117.9000.8307E+03.8756E+040005.7183.7793E.9000.6973E+03.8756E+04.1133E+00005.7183.7100.1555E+04.11776E+04.1137E+040005.7183.7783E+03.8756E+04.11776E+04.1176E+040005.725934.1160.1555E+04.11776E+04.1176E+040005.02251.11610-38.0575117.9000.6990E+03.8756E+040005.02251.12600.756.4375.148.5000.6732E+03.7453E+040002.64933.26401.48.5000.7743E+03.7453E+03.7453E+030002.7888 <td></td> <td>.437</td> <td>.5580</td> <td>٠</td> <td>9.83</td> <td>ŝ</td> <td>754E+0</td>		.437	.5580	٠	9.83	ŝ	754E+0
5004.2211.618011.388037.5238.2036+04.2180E+00005.5000.705012.919143.5240.3414E+04.1953E+00005.7856.72309.357544.0660.2836E+04.1556E+040005.7815.72007.987556.4300.2226E+04.1270E+00005.779.71948.197962.7900.1819E+04.1270E+00005.779.71948.197962.7900.1819E+04.1270E+00005.7783.71886.407557.7100.1819E+04.1170E+00005.7783.7783.7922-9.222934.1160.1147E+04.1133E+00005.7783.7926.9000.2226E+04.1133E+0.1270E+03.9755E+040005.7783.7922.94.1160.1147E+04.1133E+0.9356E+04.1133E+00005.0225.99000.22.288-112.75000.6990E+03.8756E+04.1133E+00002.02251.11610-38.0975117.9000.6990E+03.8756E+04.1133E+00002.02251.168.0000.22.288-112.75000.673E+03.8756E+04.1135E+00002.9539-1.12.7500195.0000.7743E+03.8755E+03.7453E+030002.95395.1584-288.0000.755.2500.754E+03.7452E+030002.96395.1584-288.0000.755.5000.7649E+03.7452E+030002.183 <t< td=""><td></td><td></td><td>.5860</td><td>~</td><td>3.58</td><td>6472E+0</td><td>452E+0</td></t<>			.5860	~	3.58	6472E+0	452E+0
000 4.8175 .660012.6840 40.0618 4371 ± 404 1.9536 ± 0 000 5.5000 7750 12.9191 43.5240 3414 ± 404 1.659 ± 40 000 5.7856 7720 7.9875 56.4300 22256 ± 404 1.1536 ± 40 000 5.7779 7720 7.9875 56.4300 22226 ± 404 1.170 ± 406 000 5.7779 77194 8.1977 62.77900 1.1819 ± 404 1.176 ± 40 000 5.77183 77194 8.1977 62.77000 1.147 ± 404 1.176 ± 40 000 5.7279 $.7198$ 6.4075 57.7100 1.147 ± 404 1.176 ± 40 000 5.7279 $.77000$ -24.9375 100.0000 0.9990 ± 403 9755 ± 40 000 5.7279 1.11610 -38.0575 $1.177.9000$ 67323 ± 403 8756 ± 40 000 4.5496 1.11510 -38.0575 $1.49.0000$ 6323 ± 403 87556 ± 40 000 2.9539 -7122.7500 174.5000 67245 ± 03 0573 ± 40 0573 ± 40 000 2.9539 -1122.7500 279.000 7743 ± 403 05573 ± 40 000 2.953000 -7422.2500 370.0000 7743 ± 403 0573 ± 403 000 2.9530000 -7732 0.0000 7753 ± 403 0.7753 ± 403 0000 2.9530000 -7753 ± 0000 7753 ± 403 0.7553 ± 403 0000 2.9550000 775.50000 7753 ± 403 $0.769\pm6+03$ 0000 2.95500000 775.50000		•	.6180	1.3	7. J	203E+0	180E+0
000 5.5000 7050 12.9191 43.5240 34146404 1059640 000 5.7856 7230 9.3575 44.06600 26366404 1536640 000 5.7279 7194 8.1979 62.7900 124196404 11409640 000 5.7279 71194 8.1979 62.7900 124196404 1176640 000 5.7279 71194 8.1979 62.7100 11476404 11756640 000 5.7279 77183 77188 6.4075 67.7100 11476404 11133640 000 5.7279 77183 77922 -9.2229 34.1160 11476404 11133640 000 5.4000 7926 100.000 83076404 9936640 97366640 000 5.0225 $1.480.5000$ 673236403 87756640 117566640 000 4.5496 1.4350 -75.4375 148.5000 632266403 87756640 000 2.9639 3.2640 -1168.0000 263.5000 673266403 77536403 000 2.9639 7.1720 -288.0000 775.5000 77536403 374536403 000 2.183 7.1720 -288.00000 775.5000 77536403 322666403 000 2.183 7.1720 -288.00000 775.5000 77536403 322666403 0000 2.183 7.1720 -288.00000 775.5000 775496403 322666403 0000 2.183 $7.$		•	.6600	2.68	0.0	371E+U	453£+0
000 5.7856 $.7230$ 9.3575 44.0600 $.26366+04$ $.15366+0$ 000 5.7279 $.7194$ 8.1979 62.7900 $.18196+04$ $.14096+0$ 000 5.7279 $.7194$ 8.1979 62.7900 $.18196+04$ $.12706+0$ 000 5.7279 $.7194$ 8.1979 62.7100 $.18196+04$ $.112766+0$ 000 5.7279 $.7194$ 8.1979 62.7100 $.11476+04$ $.112766+0$ 000 5.7183 $.7188$ 6.4075 84.1160 $.11476+04$ $.112766+0$ 000 5.4000 $.77922$ -99.2229 84.1160 $.11476+04$ $.11336+0$ 000 5.0225 $.90000$ -24.9375 117.9000 $.83076+04$ $.11376+04$ 000 4.5496 1.1610 -38.0575 117.9000 $.83076+04$ $.11376+04$ 000 4.96496 1.1610 -38.0575 117.9000 $.69906+03$ $.875566+04$ 000 2.96399 3.2640 -1122.7500 195.0000 $.77436+03$ $.74536+04$ 000 2.96396 -2880.0000 $.775.236+03$ $.74536+03$ $.745326+03$ 000 2.7888 5.1584 -2880.0000 $.775.236+03$ $.74536+03$ 000 2.183 7.1720 -280.0000 $.775.236+03$ $.745326+03$ 000 2.183 7.1720 -280.0000 $.775.236+03$ $.74596+03$ 000 2.183 7.1720 -280.0000 $.775.236+03$ $.74596+03$	000	•	.7050	2.9	3.5	414E+Ù	0 + 36 5 0
000 5.7375 $.7200$ 7.9875 56.4300 $.2226E+04$ $.1409E+0$ 000 5.7279 $.7194$ 8.1979 62.7900 $.1819E+04$ $.1270E+0$ 000 5.7183 $.7194$ 8.1979 62.7400 $.1147E+04$ $.1176E+0$ 000 5.7183 $.7792$ -9.2229 34.1160 $.1147E+04$ $.1133E+0$ 000 5.0225 $.99000$ -24.9375 100.0000 $.8307E+03$ $.8756E+04$ 000 4.5496 1.1610 -38.0575 117.9000 $.6990E+03$ $.8756E+04$ 000 4.0800 1.4350 -75.4375 1148.5000 $.6323E+04$ $.1133E+04$ 000 3.3865 2.2384 -112.7500 195.0000 $.69226E+03$ $.7453E+04$ 000 2.9639 3.2640 -168.0000 263.2500 $.7743E+04$ $.37453E+04$ 000 2.7886 5.1584 -288.0000 $.775.5500$ $.7743E+04$ $.5128E+0$ 000 2.183 7.1720 -280.0000 $.775.5600$ $.725.26+03$ $.7453E+04$ 000 2.183 7.1720 -280.0000 $.775.523E+03$ $.7453E+04$ 000 2.183 7.1720 -280.0000 $.725.5000$ $.5649E+03$ 000 2.183 7.1720 -280.0000 $.775.523E+03$ $.7453E+03$ 000 2.183 7.1720 -280.0000 $.755.26+03$ $.7456+03$ 1.5551 3.70000 $.775.26+03$ $.7456+03$ $.7456+04$	000	•	~	е	0 •Р	636E	536E+0
000 5.7279 $.7194$ 8.1973 62.7490 $.18196444$ $.1270640$ 000 5.7183 $.7184$ 6.4075 67.7100 $.15556444$ $.1176644$ 000 5.7183 $.7188$ 6.4075 67.7100 $.15556444$ $.1176644$ 000 5.4000 $.7922$ -9.2229 34.1160 $.11476444$ $.1133646$ 000 5.0225 $.99000$ -24.9375 100.0000 $.83076403$ $.87566440$ 000 4.5496 1.1610 -38.0575 117.9000 $.69906403$ $.87566440$ 000 4.5496 1.1610 -38.0575 117.9000 $.6922566403$ $.8755640$ 000 3.3865 2.22384 -112.7500 195.0000 $.692666403$ $.7743640$ 000 2.9639 3.2640 -168.0000 263.2000 $.77436403$ $.573640$ 000 2.7888 5.1584 -288.0000 $.775.5000$ $.77436403$ $.5128640$ 000 2.183 7.1720 -280.0000 $.775.5000$ $.726496403$ $.372966640$ 000 2.183 7.1720 -280.0000 $.775.5000$ $.56496403$ $.392966440$ 000 1.5651 3.8780 $.910.8000$ $.56496403$ $.392966440$	000	. 73	~	6.		226E+0	409E+0
0005.7183.71886.407567.7100.1555E+01.1176E+00005.4000.7922-9.222934.1160.1147E+04.1133E+00005.0225.9000-24.9375100.0000.8307E+03.9736E+00004.54961.11610-38.0575117.9000.6990E+03.8756E+00004.08001.4350-75.4375148.5000.69226E+03.8756E+00003.33652.2388-112.7500195.000.6926E+03.7453E+00002.96393.2640-168.0000263.5000.7743E+03.7453E+00002.78885.1584-288.0000471.5000.7648E+03.3825E+00002.1837.1720-280.0000775.5000.7648E+03.3729E+030002.1837.1720-280.0000775.5000.7648E+03.3929E+00001.56510.000775.5000.75649E+03.3929E+00001.56510.000.755.5000.5649E+03.3929E+0	000	.72	• 7 1 9 4	-	~	919E+U	2706+0
0005.4000.7922-9.222934.1160.11476+04.11336+00005.0225.9000-24.9375100.000.83076+03.99366+00004.54961.1610-38.0575117.9000.69906+03.87566+00003.38552.2388-112.7500195.0000.692666+03.74536+00003.38552.2388-112.7500195.0000.692666+03.74536+00002.96393.2640-168.0000263.5000.77436+03.74536+00002.78885.1584-288.0000774.5000.76486+03.74536+00002.1837.1720-280.0000775.5000.756486+03.37236+030002.1837.1720-280.0000775.5000.76486+03.372566+030002.1837.1720-280.0000775.5000.76486+03.372566+030002.1837.1720-280.0000775.5000.76486+03.39296+030001.56513.8780-55.5100.755.5000.56496+03.29666+03	000	.71	~	4.	2.	1555E+	76E+U
0005.0225.9000-24.9375100.000.8307±403.9938£400004.54961.1610-38.0575117.9000.6990€403.8756£400004.08001.4350-75.4375148.5000.6323£403.87156£400003.338552.2388-112.7500195.000.6926£403.7453£400002.96393.2640-168.0000263.0000.7743£403.7453£400002.95393.2540370.0000.7648£403.7453£400002.78885.1584-288.0000471.5000.7648£403.32256490002.1837.1720-280.0000775.5000.7648£403.3226£400002.1837.1720-280.0000775.5000.7648£403.3226£400001.56510.000775.5000.7648£403.3226£400002.1837.1720-280.0000775.5000.6580£403.3929£400001.56513.8780-55.5100910.8000.5649£403.2966£40	0	• 40	. 7922	9.2	•	1147E+	33E+0
 ,000 ,.5496 1.1610 -38.0575 117.900 ,.6990E+03 .8715E+0 .000 1.4350 -75.4375 148.5000 .6323E+03 .8715E+0 .000 .3.3855 2.2388 -112.7500 195.000 .6926E+03 .7453E+0 .000 2.9539 .7453E+03 .7548E+03 .71720 .28649E+03 .2966E+03 .2966E+03 	0	.02	σ	24.9	00.	307 E + U	38E+0
0004.08001.4350-75.4375148.5000.63236403.87156400003.338552.2388-112.7500195.0000.69266403.74536400002.95393.2640-168.0000263.5000.77436403.74536400002.8554.2800-242.2500370.0000.77436403.57536400002.778885.1584-288.0000471.5000.75486403.322364030002.1837.1720-280.0000775.5000.72236403.39296400001.56513.8780-55.5100910.8000.56496403.2966640	000	• 54	-	38.0	17.	0+3066	566+0.
0003.33852.2388-112.7500195.000069266640374536400002.96393.2640-168.0000263.50007743640365736400002.9554.2800-242.2500370.00007648640358256400002.778885.1584-288.0000671.50007223640339296400002.1837.1720-280.0000775.500056496403392966400001.56513.8780-55.5100910.8000564964032966640		.		5.4		323E	156+0
000 2.9639 3.2640 -168.0000 263.5000 .7743E+U3 .6573E+U 000 2.855 4.2800 -242.2500 370.0000 .7648E+U3 .5825E+O 000 2.7888 5.1584 -288.0000 471.5000 .7223E+O3 .5128E+U 000 2.183 7.1720 -280.0000 775.5000 .6580E+O3 .3929E+U 000 1.5651 3.8780 -55.5100 910.8000 .5649E+O3 .2966E+O	-		•2388	112.7		926E+0	453E+0
000 2.855 4.2800 -242.2500 370.0000 7648E+03 5825E+0 000 2.7888 5.1584 -288.0000 471.5000 77223E+03 5128E+0 000 2.183 7.1720 -280.0000 775.5000 6580E+03 3929E+0 000 1.5651 8.8780 -55.5100 910.8000 5649E+03 2966E+0		. 963	.2640	168.0		743E+	6573E+U-
.000 2.7888 5.1584 -288.0000 471.5000 .7223E+03 .5128E+0 .000 2.183 7.1720 -280.0000 775.5000 .6580E+03 .3929E+0 .000 1.5651 8.8780 -55.5100 910.8000 .5649E+03 .2966E+0		.85	.2800	242.2		7648E+	8256+0
.000 2.183 7.1720 -280.0000 775.5000 .6580E+03 .3929E+0 .000 1.5651 8.8780 -55.5100 910.8000 .5649E+03 .2966E+0		.788	.1584	288.0	പ്	7223E+0.	1286+0
000 I.565I 8.8780 -55.5100 910.800U .5649E+03 .2966E+0	-	.18	.1720	280.00	ບ ອ	580E+0	9296+0
	.000	• 56	78	55.51	10.80	649E+0.	9666+0

i te	$\alpha_{\text{CDE}}(\text{cm}^{-1})$	•23296+04 •21056+04 •19506+04 •19516+04
graph	a CDE	. 2332 . 1950 . 1950
Optical constants and extinction coefficients of graphite (continued).	$\alpha_{\rm CS}$ (cm ⁻¹)	.4640£+03 .3871£+03 .3279£+03 .2813£+03
nction coe	T 23	868.5J0U 812.7000 752.0000 779.5800
s and exti	T۲3	10.4490 133.7600 12.1920 105.0400 13.4130 46.5600 14.5400 -118.8000
)ptical constant (continued).	£ 2 //	10.4490 12.1920 13.4130 14.5400
	ε 1//	L.2824 .6916 .4144 0.0000
Table A.3.	(מח') ע	70.000 80.000 90.000 100.000

Optical constants and extinction coefficients of graph		
coeff		
extinction		
and		
constants	. (bət	
Optical	(continue	
le A.3.		

-	ε 1	ε2	Z	К	α _{CS} (cm ⁻¹)	$\alpha_{\rm CDE}$ (cm ⁻¹)
	0	80	39	20	50 4E + Ú	5 6 3 E
) r	59	5	27	636E+J	32E
	5355	-5240	.6902	.3790	4	411
) (666	57	59	Ë + 0	290E
	ົ້	-684	33	02	6866+0	433Ē
	20	.389	-264	.9452	53E+0	176E
.) (572	924.	41	343E+0	41E
4 '\) (941	742	5.2	504E+3	J 8 E
	9.6	•665	169.	20	160E+0	3 T E
		417	.385	.1508	6146+0	37E
		447	.242	βÜ	122E+0	566
		782	.217	21	33E+0	7.0 E
	60	.351	.190	67	0+3440	L 7 E
	2.4	981	339	.7396	6 E + 0	7 E
_	5	.158	.457	40	692E+0	14E
	. 8 -	.265	.543	33	2986+0	94 E
	10	.291	943.	10	9986+0	LE
	.41	.358	.700	+ 6 6 0 •	5236+0	37É
	- 60	.342	.747	20	2426+0	615Ë
	- 23	.395	L.7857	20	0+3647	132ē
	6	.465	618.	.6845	4 4 E + 0	.1036É+06
, .,	60.	- 560	. 880	5	777E+0	821E
, ,,		.995	.936	73	042E+U	173ċ
• •		.192	.002	5	033E+Ù	2686
• • •		.446	.031	48	557E+0	ġ2αĒ
	· •	.522	.041	29	493E+0	779Ē
		.575	• 0 •	73	418E+0	300E
		. 648	.000	.8853	322E+0	36Ë
		. 708	2.0534	00	 6306E+Up 	•601¢E+Ù5

.

-

Table A.4.	Optical carbon	constants (continued)	and •	extinction coef	fficients of	glassy
(шл) ү	t 3	ε 2	z	м	α _{CS} (cm ⁻¹)	$\alpha_{\rm CDE}$ (cm ⁻¹)
00	.645	. 80	111.	00	510	4 0 6 E + 0
20	.129	• 2 8	• 24	53	932E+U	4 8 4 E + 0
1.400	4.7151		ð	.9704	2E+0	•4644E+05
. 60	•043	.87	4.	92	416E+	0 8 5 E +0
BOB.	.480	.10	• 546 •	02	0+3116	596E+Ü
00.	. 849	.37	.626	23	552E+U	248E+0
. 50	. 344	.61	.801	.002	975E+0	4566+0
00	.229	•66	.805.	6.9	442E+U	994 E +0
. 50	. 705	.93	.952	<u>6</u> 0	1946+0	707E+0
00.	.102	•28	.029	36	0286+0	515E+0
50	.264	.18	.048	5 T	863É+Ù	314E+Ù
00.	.153	•25	•035	L.0299	0+3047	203£+Ù
00.	.579	• 21	.145	• 147	00000+0	0906+0
00.	.398	96.	.156	52	407E+0	015E+0
00.	.249	• 49	٠	c [b •	\mathbf{o}	624E+U
00.	• 552	0.08	.423	• 472	863E+	774E+0
0.000	0.242	0.96	.552	.542	22JE+0	063E+0
1.000	0.600	1.62	.628	•602	777E+0	+ 3664
2.000	1.070	2.05	·703	27	357E+J	887±+0
3.000	1.202	2.68	.750	-1	76+	543E+0
4.000	1.741	3.41	.845	• 7 4 4	786E+0	1566+
5.000	1.893	3.82	.831	.781	5796+	826E+0
6.000	2.270	4.48	.952	.831	366E+Ú	543E+0
7.000	2.365	5.13	466.	46 R •	217±+0	349E+0
8.000	3.027	5.39	.102	676.	011E+0	1016+Ü
9.000	3.305	6.14		.169.	856£+3	813E+0
0.000	3.530	6.52	.176	•97ð	456+0	603Ë+0
1.000	3.608	7.14	4.2189	.032	644E+0	4696+0
3.000	.232	17.9435	• 30		<pre>.1441E+04</pre>	÷ u
000	4.239	9.11	4.3633	06 1 •	30dE+0	9456+0

•

$\lambda (\rm lum) \qquad \mbox{E1} \qquad \mbox{E2} \qquad \mbox{M} \qquad \mbox{K} \qquad \mbox{Cg} (\rm cm^{-1}) \qquad \mbox{Cg} (\rm cm^{-$	Table A.4.	Optical carbon	constants (continued)	and extin.	and extinction coefficients	ficients of	glassy
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	γ (hm)	ε 1		N	К	cs	CDE (cm ⁻
29,00014,953921,54454.537b2.37401141E+04.33225+4033,00015,415322,30804.61312.541797116E+04.33225+4033,00016,005324,70874.66782.5710.8871E+03.3966E+037,00016,005326,77304.65782.5710.8774+03.2955E+037,00016,005326,77304.65782.5710.8774+03.2955E+037,00016,005326,77304.90592.6714.2955E+0.2917641,00017,253726,77364.90572.6774+03.29144+03.29144+043,00017,253729,79165.04942.66724+03.261774+03.29144+043,00017,253729,79165.04945.0494.666224+03.261774+03.20144+050,00017,253729,79165.04943.09633.10966+03.10976+03.20146+050,00018,72739,05665.44913.49843.81766+03.16976+0350,00018,72734,04013.49843.81766+03.16976+03.16976+0350,00018,727559,49013.49843.919652.2576+03.16976+0350,00018,737551,43025.48913.99955.29176+03.16976+0350,00018,737554,4913.49843.89366+03.16976+03.16976+0350,00018,737554,4915.49954.7493.129766+03.16976+0350,00018,492554,491	7 . 00	4.792	0.270	.405	.269	241E+0	684E+0
33.000 15.4345 22.3080 4.6131 2.4179 10416404 .33226440 335.000 15.4163 23.5677 4.6678 2.5717 .97166403 .32226440 37.000 16.1625 25.7730 4.8246 2.5717 .82776403 .2819640 37.000 16.7579 25.7136 4.9059 2.7226 .76446403 .2819640 4.8276640 2.5716403 .28494 .66656403 .2819640 37.0000 18.75537 33.48665 5.32469 3.4984 .666567403 .2284640 37.0000 18.7673 31.4865 5.3249 3.4984 .653566403 .2284640 37.0000 18.7675 33.4891 3.4984 .533566403 .2284640 5.5000 18.77537 34.9865 5.32493 3.4984 .533566403 .2284640 5.5000 18.7027 3.64891 3.4984 .533566403 .22846640 75.0000 18.7027 3.64891 3.4984 .533566403 .22846640 77.0000 18.7027 36.4891 3.4984 .533566403 .1267640 86.7000 18.2833 46.7814 5.8072 3.4984 .23766403 .12676640 86.7000 18.2833 46.7814 5.8072 3.4984 .2576403 .1265640 95.000 17.3795 5.44891 3.69453 .34006403 .12676640 17.3705 000 18.2833 46.7814 5.89224 3.4986403 .12646640 17.3795 5.124965 5.7094 4.1694 .22576403 .1555640 95.000 17.3705 5.94851 4.7913 .18936403 .15656640 95.000 17.3215 60.8160 6.3465 4.7913 .18936402 .73966402 .7346640 .22676403 .15656640 .7366600 .73661 11.8223 .167781 .167187 .23956640 .644667 .2376450 .1995677 .905 .000 .17.8167 .0111 .2216640 .50000 .17.3215 .001 .12.477 .32156401 .2195640 .5000 .44.177 .3511 .10419 .14.1419 .21641 .2166640 .2216640 .2216640 .22576402 .12956640 .5341640 .2512640 .5341640 .22576402 .124666 .1295656402 .129566402 .129566402 .129566402 .129566402 .129566402 .129366402 .129366402 .129566402 .129566400 .13566662 .1000 .1266169 .13576402 .129566401 .1295666401 .1295666401 .1295666401 .129566640 .13665966401 .13665966401 .129566640 .129566640 .129566640 .129566640 .129566640 .129566640 .129566640 	9.00	4.953	1.544	.537	.374	141E+0	535E+0
33.000 15.4153 23.5577 4.6678 2.5245 9716E4U3 3226E40 39.000 16.6553 25.7730 4.9037 2.7210 3871E403 2819440 41.000 16.6553 25.7730 4.9037 2.7210 32966E40 39.000 16.6553 25.7730 4.9037 2.9176 5.76474103 2734440 41.000 17.2857 29.7916 5.20403 2.7217E403 2734440 5.2000 18.5927 31.4865 5.20403 2.29176 52.493 2.2284440 55.000 18.5927 31.4865 5.20403 2.29176 52.493 2.2284440 55.000 18.5927 31.4865 5.20403 2.29176 52.493 2.2284440 55.000 18.7027 35.7297 5.0409 3.3082 4.4967 3.2024440 55.000 18.7027 35.0707 35.4901 3.4984 38705403 2.284440 55.000 18.7027 35.0707 3.54091 3.4984 38705403 1.639640 77.0000 18.7027 35.0707 3.54091 3.4984 38705403 1.639640 77.0000 18.7025 55.0495 5.7094 3.8022 31346403 1.639640 77.0000 18.2833 46.7814 5.8524 9.4995 2.28046403 1.639640 77.0000 17.5375 5012 4.1499 2.2576403 1.639640 77.0000 17.3795 51.4302 5.9926 4.7913 1.8936403 1.639640 77.0000 17.3795 51.4302 5.99451 4.7913 1.8936403 1.639640 77.0000 17.3795 51.4302 5.94265 4.7913 1.8936403 1.639640 77.0000 17.3705 51.4302 5.94264 4.7931 1.5576403 1.639640 77.0000 17.37055 51.4302 5.94264 4.7913 1.8936403 1.639640 77.4501 2.1417 352.54011 11.8223 9.4000 1.3566402 5.341640 05.000 73.6501 2.411.3412 1.2.2576403 1.63966402 5.544164 05.000 74.4501 2.411.3412 1.2.2576403 1.63966402 5.5441640 05.000 74.4501 2.411.3412 1.2.2576403 1.63966402 5.5441640 05.000 74.4501 2.411.34302 5.4400 2.2576403 1.63966402 5.5441640 05.000 74.4501 2.411.3412 1.2.21664 9.4000 1.3566402 5.5441640 05.000 74.4501 2.411.3412 1.2.21664 9.22576403 1.6376640 05.000 74.4501 2.411.3412 1.2.21664 9.22576401 1.22676400 1.22676401 1.22676400 0.22646400 0.226460 0	1.00	5.434	2.308	.613	114.	041E+0	325E+0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.00	5.415	3.567	.667	.524	716E+J	222E+0
37.00016.142525.7730 4.8246 2.5710 42774403 2955640 39.00016.55326.7136 4.9059 2.7226 76446403 28494 2734646 43.00017.255729.7237 5.0437 2.8494 652476403 $223466666666666666666666666666666666666$	5.00	6.005	4.708	.766	165.	871E+0	066E+0
39.000 16.7579 26.7136 4.9059 2.7226 76441203 2819440 41.000 17.2857 29.77316 5.0403 2.9476 662476403 2734640 45.000 17.2857 29.77916 5.0403 2.9476 662476403 22846440 55.000 18.5557 29.77916 5.2916 5.3246 3.14865 5.224676403 228466403 55.000 18.577 31.48655 5.244991 3.4984 535966403 228466403 55.000 18.277 34.8665 5.48991 3.4984 337966403 21676403 70.000 18.2833 45.78166 5.48991 3.4984 337966403 12906640 70.000 18.2833 45.78166 3.4984 334965 42965 12906640 70.000 18.2893 45.78166 3.4984 3.80766403 1269766403 70.000 18.2893 45.78165 3.67633 129066403 126976403 75.000 18.2803 45.78165 4.7994 3.80766403 126976403 75.000 18.2803 45.78656643 3.995564403 126976403 126976403 75.000 18.2803 45.78656643 3.99955 229466403 1269766403 75.000 18.2803 45.78656643 3.99955 229466403 1269766403 95.000 17.6025 5146576566443 3.697623 1295666443 1295666643 95.000 17.6025 $514655666364465766666666666666666666666666$	7.00	6.142	5.773	. 824	.i71	277E+U	955E+0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	00.6	6.055	6.713	; 06•	.722	645+0	8196+0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	00 T	6.757	7.868	.963	.807	171E+0	734E+0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3.00	7.285	8.723	.040	.849	662E+U	613E+Ú
50.00018.592531.48655.32463.1402.4800E403.2284E4055.00018.702735.025565.44493.1402.4800E403.2167E4060.00018.702736.025565.44493.34082.4242E403.2024E4070.00018.494241.92125.67073.6963.3400E403.1950E4070.00018.494241.92125.67073.6963.3400E403.1697E4070.00018.494241.92125.67073.6963.3400E403.1697E4070.00018.140543.41665.70943.9955.2104E403.1697E40370.00018.283346.78145.90124.1499.2595E403.1577E40370.00017.60255344654.7913.1894E403.1577E403.1577E40395.00017.60255344554.7913.1894E403.1577E403.1577E40395.00017.379553.44556.446554.7913.1894E402.1363E4095.00017.379553.42554.7913.1894E402.1577E403.1577E40395.00037.6603167.312110.22644.7913.1894E402.1363E40295.00037.6603167.312110.22544.7913.1894E402.1363E40295.00037.6603167.312110.22644.7913.1894E402.1363E40295.00054.45054.4505.2405.2396E402.15355E402.15355E40295.00054.45024.56514.167737.2	5.00	7.553	9.791	.10 <u>5</u>	116.	247E+0	527E+0
55.00018.237733.66665.32403.1602.216764060.00018.702736.02565.48913.4984.38796403.195064070.00018.494241.92125.48913.4984.38796403.195064070.00018.494241.92125.67073.6963.34006403.216764070.00018.494241.92125.67073.6963.34006403.165064070.00018.140543.41665.70943.8022.31346403.163964075.00017.602548.97885.99614.25958.21639640.163964095.00017.602548.97885.99514.1499.25926403.157764095.00017.379551.43025.94654.1499.25976403.157764095.00017.321564.74256.74574.7913.18936403.157764095.00017.321564.74256.74574.7913.18936403.157764095.00017.321564.74256.74574.7913.18936403.157764095.00017.321564.74256.74574.7913.18936403.157764095.00017.321564.74256.74574.1604.13546402.1363640295.00057.476022.47601.16224639.4060.13646402.1363640295.00054.45012410312.47269.13546402.23966402.23956640295.00054.4501241111.82239.4060.23966402.2395664	00.00	8.592	1.486	.251	196.	356E+0	284E+0
60.00018.702736.02565.44493.308242426403.202464070.00017.891438.40615.48913.4984.38796403.195064075.00018.494241.92125.67073.6963.34006403.185064075.00018.140543.41665.70943.6965.28046403.169764085.00017.602548.97885.90124.1499.25926403.169764090.00017.602551.43025.94264.4440.22576403.163964090.00017.379551.43025.94264.4440.22576403.15376640390.00017.379551.43025.94264.4440.22576403.15376640390.00017.321560.81606.34654.7913.18936403.155764090.00017.321560.81606.34654.7913.18936403.155764095.00022.476064.74256.74574.7913.18936402.199164005.00037.6603167.312110.22644.1604.23966402.93257640305.00073.926311.045713.439711.5719.672659640.940605.9527640105.00073.6612241.391412.226514.1320.123566401.280226402.149164005.00073.6603167.312110.22644.1604.23366402.403964005.00074.4501241.391412.226511.477352.5256.4037005.00074.4501241.3914 <td>5.00</td> <td>8.237</td> <td>3.866</td> <td>.324</td> <td>09T.</td> <td>800E+0</td> <td>167E+Ŭ</td>	5.00	8.237	3.866	.324	09T.	800E+0	167E+Ŭ
65.000 17.8914 38.4061 5.4891 3.4984 $38796+03$ $11706+03$ 75.000 18.4942 41.9212 5.6707 3.6963 $334006+03$ $118026+03$ 75.000 18.1405 43.4166 5.7094 3.8022 $31346+03$ $118026+03$ 80.000 18.1405 43.4166 5.7094 3.8022 $31346+03$ $116976+03$ 85.000 17.3795 51.4302 5.9012 4.1499 $229526+03$ $116396+03$ 90.000 17.3795 51.4302 5.9426 4.1499 $225926+03$ $116396+03$ 90.000 17.3795 51.4302 5.9426 4.7913 $128936+03$ $115776+03$ 90.000 17.3795 51.4302 5.9426 4.7913 $128936+03$ $115776+03$ 90.000 17.3215 60.8160 6.7457 4.7913 $128936+03$ $115776+03$ 90.000 17.3215 60.8160 6.7457 4.7913 $128936+03$ $115776+03$ 90.000 17.3215 109.2555 6.4605 $45556+03$ $115576+03$ $115576+03$ 90.000 22.47760 617265 4.7913 $128936+02$ $739366+02$ $739366+02$ 95.000 37.6603 167.3121 $10.2226+04$ 4.1604 $237966+02$ $70946+02$ 95.000 91.2939 222.4011 11.8223 9.4060 $12076+02$ $70946+02$ 95.000 91.2939 24657 14.1604 $12976+02$ $49556-02$ $70936-02$ </td <td>0.00</td> <td>8.702</td> <td>6.025</td> <td>+++•</td> <td>.308</td> <td>242E+U</td> <td>024E+0</td>	0.00	8.702	6.025	+++•	.308	242E+U	024E+0
70.000 18.4942 41.9212 5.7094 3.6707 3.6563 $.3400$ 18.1405 43.4166 5.7094 3.8022 $.3134$ 60.3 1.766 64.7814 5.8524 3.9965 $.2004$ 66.03 1.766 64.7814 5.8524 3.9965 $.2004$ 66.03 1.766 64.7814 5.8524 3.9965 $.2004$ 66.03 1.697 64.99 1.76025 48.9788 5.9012 4.1499 2.2592 640 676 10395 1.6028 15.2082 53.2932 5.9426 4.7913 1.893 61.3756 103956 1000 17.3795 51.4302 5.9426 4.7913 1.8936 103 1.5776 1000 17.3795 53.2932 5.9426 4.7913 1.8936 103 1.5776 1000 17.3795 51.4302 5.9426 4.7913 1.8936 103 1.5776 1000 17.3795 53.2932 5.9426 4.7913 1.8936 103 1.36376 1000 17.3795 53.2932 5.9426 4.7913 1.28936 103 1.3636 1.9966 103 1.36396 1000 17.3200 22.4610 1.2613 1.3636 1.36396 1.000 17.3799 1.3637 1.3639 1.36376 1.3600 17.3200 22.4750 1100.600 1.7600 1.3696 1.03 1.36376 1.3636 1.3600 17.2939 222.4011 11.8223 9.4060 1.35396 1.02 1.36956 100 1.3566 100 1.3566 100 1.35396 1000 1.3566 1000 1.2600 1.35396 1000 1.3600 1.2600 1.2600 1.2600 1.2600 1.2600 1.2600 1.2600 1.2600 1.2600 1.2600 1.2600 1.2600 1.2600 1.2600 1.2600 1.2600 1	5.00	7.891	8.406	.489	• 498	8796+0	0+3046
75.00018.1405 43.4166 5.7094 3.9022 31346403 1766640 80.00018.2833 46.7814 5.8524 3.9965 28046403 1697640 90.00017.6025 48.9788 5.9012 4.1499 25926403 1697640 90.00017.3795 51.4302 5.9461 4.2954 22766403 1577640 95.00017.3795 51.4302 5.9426 4.7491 225766403 1577640 95.00017.3715 60.8160 6.3465 4.7913 18936403 1577640 95.00017.3215 60.8160 6.3465 4.7913 18936403 1577640 95.00017.3215 60.8160 6.7457 4.7988 16266403 126976403 95.00022.4760 19.5903 9.2555 6.4605 45556403 123656402 95.00022.4760 19.5903 9.2555 6.4605 45556402 14916402 95.00027.4725 6.7457 4.7988 162266402 12366402 13676402 95.00027.4726 12.293966402 12366402 403966402 403966402 95.000 54.4501 241.0757 13.4397 11.5719 6.728626402 95.000 54.4501 241.026 12.40202 222.4011 12.2456 4.7766 95.000 54.4501 21.22664 14.1677 37.225664 4.16005 455566402 95.000 54.4501 241.0276 12.4726 512366402	00.00	8.494	1.921	•670	• 6 46	4006+0	L 3 5 6 E + 0
80.00018.283346.78145.852d3.9965.2804€+03.1697€+085.00017.602548.97885.90124.1499.2592€+03.1577E+090.00017.379551.43025.94264.2954.2376E+03.1577E+095.00017.321560.81606.34654.7913.1893E+03.1555E+005.00017.321560.81606.34654.7913.1893E+03.1555E+005.00017.321560.81606.34654.7913.1893E+03.1363E+005.00022.476064.74256.74574.7988.1628E+03.1363E+005.00037.6603167.312110.22644.1604.2396E+02.1363E+005.00037.6603167.312110.22644.1604.2396E+02.1363E+005.00054.4501241.391412.22644.1604.2396E+02.1363E+005.00054.4501241.391412.22644.1607.1353dE+02.4039E+005.00054.4501241.391412.22644.1607.1353dE+02.4039E+005.00054.4501241.391412.22640.1007E+02.3257E+005.00046.7167311.045713.439711.5719.6726E+01.2682E+005.00049.4167352.525614.132012.4726.5135E+0.2932E+005.00049.4107352.525614.132012.4726.5175±0.1932E+005.00049.410540.05012.4726.5175±0.2932E+0 </td <td>5.00</td> <td>8.140</td> <td>3.416</td> <td>.709</td> <td>.802</td> <td>134E+0</td> <td>766E+U</td>	5.00	8.140	3.416	.709	.802	134E+0	766E+U
85.00017.602548.97885.90124.1499.2592E+03.1639E+090.00017.379551.43025.98614.2958.2376E+03.1577E+095.00015.208253.29325.94264.4840.2257E+03.1555E+000.00017.321560.81606.34654.7913.1893E+03.1555E+005.00017.321560.81606.34654.7913.1893E+03.1565E+005.00022.476064.74256.74574.7988.167314.1363E+005.00037.6603167.312110.22644.1604.2396E+02.1363E+005.00054.4501241.391412.22644.1604.13536E+02.1491E+005.00054.4501241.391412.22644.1604.13536E+02.1493E+005.00054.4501241.391412.22649.4060.1356E+02.14036E+005.00054.4501241.391412.22649.4060.1356E+02.14036E+005.00046.7167311.045713.439711.5719.6728E+01.2882E+005.00049.416713.439711.5719.6728E+01.2882E+005.00049.410540.363115.108111.5719.6728E+01.29222E+005.00049.4107352.525614.132012.4726.5135E+01.2932E+005.00049.4107352.525614.132012.4726.5135E+0.1932E+005.00049.410540.3023115.108114.147.2975E	0.00	8.283	6.781	.852	.996	904E+0	697£+0
90.00017.379551.43025.98614.2958.23766403.157764095.00015.208253.29325.94264.4840.22576403.155564000.00017.321560.81606.34654.7913.18936403.149164005.00022.476064.74256.74574.7988.16286403.149464405.00037.6603167.312110.22644.1604.23966402.709464405.00037.6603167.312110.22644.1604.23966402.40396440205.00054.4501241.391412.22644.1604.23966402.40396440205.00054.4501241.391412.226439.4060.13546402.40396440205.00054.4501241.391412.22639.4060.13546401.288264005.00046.7167311.045713.439711.5719.67286401.288264005.00044.1477352.525614.132012.4726.51356401.288264005.00049.4105672.86401.23946402.40396402.4039640205.00073.56124037115.108113.3563.3257640105.00073.561219.430711.5719.57756.5135640105.00073.5612403.03115.108113.3563.3931640105.00073.5612470.093116.573714.1219.29756401.1932244005.00073.5612470.093116.573714.1219.29756401.19322460 <td>5.00</td> <td>7.602</td> <td>8.978</td> <td>.901</td> <td>64T •</td> <td>592E+0</td> <td>6396+0</td>	5.00	7.602	8.978	.901	64T •	592E+0	6396+0
95.000 15.2082 53.2932 5.9426 4.4840 .2257E+03 .1555E+0 00.000 17.3215 60.8160 6.3465 4.7913 .1893E+03 .1491E+0 05.000 22.4760 64.7425 6.7457 4.7988 .1628E+03 .1363E+0 05.000 37.6603 167.3121 10.2264 4.1604 .2396E+02 .7094E+0 05.000 37.6603 167.3121 10.2264 4.1604 .2396E+02 .5341E+0 05.000 54.4501 241.3914 12.2263 9.4060 .1354E+02 .5341E+0 05.000 54.4501 241.3914 12.2263 9.8236 .1007E+02 .3257E+0 05.000 44.1477 352.5256 14.1320 12.4726 .5135E+01 .2882E+0 05.000 49.4105 403.6371 15.1081 11.5719 .6728E+01 .2882E+0 05.000 73.5612 470.0931 16.5737 14.1419 .2975E+01 .1932E+0	0.00	7.379	1.430	• 9 <u>8</u> 6	• 2 9 5 •	376E+0	577E+0
00.00017.321560.81606.34654.791318936403149164005.00022.476064.74256.74574.798816266403136364005.00037.6603167.312110.22644.1604.23966402534164005.00037.6603167.312110.22644.1604.23966402534164005.00054.4501241.391412.22639.4060.13546402.4039644005.00054.4501241.391412.226513.439711.5719.67286401.288264005.00054.4501241.391412.226514.132012.4726.513546401.288264005.00044.1477352.525614.132012.4726.513564401.288264005.00049.4105403.637115.108113.3563.33316401.288264005.00073.5612403.033116.573714.1419.29756401.193264005.00073.5612470.393116.573714.1419.29756401.1932640	5.00	5.208	3.293	.942	494.	257E+0	555E+0
05.000 22.4760 64.7425 6.7457 4.7988 .1628E403 .1363E40 05.000 43.9262 119.5903 9.2555 6.4605 .4555E402 .7094E4 05.000 37.6603 167.3121 10.2264 8.1604 .2396E402 .5341E40 05.000 54.4501 241.3914 12.2663 9.4060 .1354E402 .4039E40 05.000 54.4501 241.3914 12.2263 9.4050 .1007E402 .3257E40 05.000 44.1477 352.5256 14.1320 12.4726 .5135E401 .2882E40 05.000 44.1477 352.5256 14.1320 12.4726 .5135E401 .22842E40 05.000 73.5612 470.0931 16.5737 14.1419 .2975E401 .22842E40	00.00	7.321	0.816	.346	.791	893E+0	491E+0
05.000 43.9262 119.5903 9.2555 6.4605 .4555E+J2 .7044E+U 05.000 37.6603 167.3121 10.2264 4.1604 .2396E+O2 .5341E+O 05.000 54.4501 241.3914 12.2663 9.4060 .1354E+O2 .4039E+O 05.000 54.4501 241.3914 12.2263 9.8236 .1U07E+U2 .3257E+O 05.000 46.7167 311.0457 13.4397 11.5719 .6728E+U1 .2882E+U 05.000 44.1477 352.5256 14.1320 12.4726 .5135E+U1 .2582E+U 05.000 49.4105 403.6371 15.1081 11.3573 .3931E+U1 .2216E+O 05.000 73.5612 470.0931 16.5737 14.1419 .2975E+U1 .1932E+U	05.00	2.476	4.742	• 7 4 5	•798	62 8E+0	363E+0
05.000 37.6603 167.3121 10.2264 d.1604 .2396E+02 .5341E+0 05.000 51.2939 222.4011 11.8223 9.4060 .135dE+02 .4039E+0 05.000 54.4501 241.3914 12.2d63 9.8236 .1007E+02 .3257E+0 05.000 46.7167 311.0457 13.4397 11.5719 .6728E+01 .2882E+0 05.000 44.1477 352.5256 14.1320 12.4726 .5135E+01 .2582E+0 05.000 49.4105 403.6371 15.1081 1J.3563 .3931E+01 .2216E+0 05.000 73.5612 470.0931 16.5737 14.1419 .2975E+01 .1932E+0	05.00	3.9262	19.590	665.	•460	555E+U	04840
05.000 51.2939 222.4011 11.8223 9.4060 .135dE+02 .4039E+0 05.000 54.4501 241.3914 12.2d63 9.8236 .1007E+02 .3257E+0 05.000 46.7167 311.0457 13.4397 11.5719 .6728E+01 .2882E+0 05.000 44.1477 352.5256 14.1320 12.4726 .5135E+01 .2582E+0 05.000 49.4105 403.6371 15.1081 13.3563 .3931E+01 .2216E+0 05.000 73.5612 470.3931 16.5737 14.1419 .2975E+01 .1932E+0	05.00	7.6603	67.312	0.226	.160	396E+0	341E+0.
05.000 54.4501 241.3914 12.2d63 9.8236 .1007E+02 .3257E+0 05.000 46.7167 311.0457 13.4397 11.5719 .6728E+01 .2882E+0 05.000 44.1477 352.5256 14.1320 12.4726 .5135E+01 .2522E+0 05.000 49.4105 403.6371 15.1081 13.3563 .3931E+01 .22216E+0 05.000 73.5612 470.0931 16.5737 14.1419 .2975E+01 .1932E+0	05.00	1.2939	22.401	1.822	•406	353E+0	039E+0
05.000 46.7167 311.0457 13.4397 11.5719 .6728E+01 .2882E+0 05.000 44.1477 352.5256 14.1320 12.4726 .5135E+01 .2522E+0 05.000 49.4105 403.6371 15.1081 13.3563 .3931E+01 .2216E+0 05.000 73.5612 470.3931 16.5737 14.1419 .2975E+01 .1932E+0	00 • 60	4.4501	41.391	2.236	.823	007E+0	2 5 7 E + 0
05.000 44.1477 352.5256 14.1320 12.4726 .5135E+U1 .2522E+U 05.000 49.4105 403.6371 15.1081 13.3563 .3931E+U1 .2216E+O 05.000 73.5612 470.3931 16.5737 14.1419 .2975E+U1 .1932E+U	05.00	6.7167	11.045	3.439	1.571	7286+0	8 82 E + 0
05.000 49.4105 403.6371 15.1081 14.3563 .3931E+01 .2216E+0 05.000 73.5612 470.0931 16.5737 14.1419 .2975E+U1 .1932E+U	05.00	4.1477	52.525	4.132	2.472	135E+U	522E+0
05.000 73.5612 470.0931 16.5737 14.1419 .2975E+U1 .1932E+U	00.40	9.4105	03.637	5.108	ödE.t	931E+0	2166+0
	05.00	3.5612	70.093	6.573	4.101	9756+0	932E+U

.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SELECTED BIBLIOGRAPHY

- Abdelrhaman, M., Fumeaux, P., and Suter, P., Solar Energy 22, 45 (1979).
- Arakawa, E. T., Williams, M. W., and Inagaki, T., J. Appl. Phys. <u>48</u>, 3176 (1977).
- Blea, J. M., Parks, W. F., Ade, P. A. R., and Bell, R. J., J. Opt. Soc. Am. <u>60</u>, 603 (1970).
- Bohren, C. F., and Huffman, D. R., Absorption and Scattering of Light by Small Particles (New York: John Wiley, 1983).
- Carter, J. G., Huebner, R. H., Ham, R. N., and Birkhoff, R. D., Phys. Rev. <u>137A</u>, 639 (1965).
- Chylek, P., Ramaswany, V., Cheng, R., and Pinnick, R. G., Appl. Optics 20, 2980 (1981).
- Dalzell, W. H., and Sarofin, A. F., J. Heat Transf. <u>91</u>, 100 (1969).
- Daniels, J., Festenberg, C. V., Raether, H., and Zeppenfeld, K., Springer Tracts in Mod. Phys. <u>54</u>, 77 (1970).
- Day, K. L., and Huffman, D. R., Nature 243, 50 (1973).
- Debye, P., Annln. Phys. <u>30</u>, 59 (1909).
- Decker, D., Ph.D. Dissertation, University of California, Riverside (1969).
- DiNardo, R. P., and Goland, A. N., J. Opt. Soc. Am. <u>61</u>, 1321 (1971).
- Ergun, S., Nature 213, 135 (1967).
- Faxvog, F. R., and Roessler, D. R., Appl. Optics <u>16</u>, 2612 (1978).
- Foster, P. J., and Howarth, C. R., Carbon 6, 719 (1968).

- Gouw, T. H., <u>Guide to Modern Methods of Instrumental Analy</u>sis (New York: John Wiley, 1972).
- Greenaway, D. L., Harbeke, G., Bassani, F., and Tossati, E., Phys. Rev. 178, 1340 (1969).
- Hagemann, H. J., Gudat, W., and Kuntz, C., Deutsches Electronen-Synchrotron DESY SR-74/7 (1974).
- Halpin, M. K., and Jenkins, G. M., Proc. Roy. Soc. Lond. A 313, 421 (1969).
- Howarth, C. R., Foster, P. J., and Thring, M. W., Proceeding of the Third Int. Heat Transf. Conference 5, 122 (1966).
- Huffman, D. R., Department of Physics, University of Arizona, Tucson, private communication (1979).

, Adv. in Phys. 26, 129 (1977).

, Astr. and Space Sci. 34, 175 (1975).

- Huffman, D. R., and Bohren, C. F., in Light Scattering by Irregularly Shaped Particles, D. W. Shuerman, ed. (New York: Plenum Press, 1980).
- Hunt, A. J., in Topical Meeting on Optical Phenomena Peculiar to Matter of Small Dimensions, Opt. Soc. of America (1980).

, in Proceeding of the 13th Intersociety Energy Conversion Engineering Conference, Boston, MA, Aug. 5-10 (1979).

_____, Small Particle Heat Exchangers, Lawrence Berkeley Laboratory Report LBL 7841 (1978).

Jackson, J. D., Classical Electrodynamics, 2nd ed. (New York: John Wiley, 1975).

Janzen, J., J. Coll. Inter. Sci. 69, 436 (1979).

- Kerker, M., The Scattering of Light and Other Electromagnetic Radiations (New York: Academic Press, 1969).
- Kittel, C., Introduction to Solid State Physics, 5th ed. (New York: John Wiley, 1976).

Klucker, R., Thesis, University of Munich (1971).

Klucker, R., Skibowski, M., and Steinman, W., Phys. Stat. Sol. (B) 65, 703 (1974).

Koike, C., Hasegawa, H., and Manabe, A., Astr. and Space Sci. <u>67</u>, 495 (1980).

Lee, S. C., and Tien, C. L., in Eighteen International Symposium on Combustion, The Combustion Institute (1981).

Lefevre, J., Astro. Astrophys. 5, 37 (1970).

Lehnam, A. P., and Treherne, D. M., The Observatory <u>86</u>, 36 (1966).

Mallett, C. P., Phys. C: Solid State Phys. 14, L213 (1981).

Mie, G., Annln. Phys. 25, 377 (1908).

Miller, R. G., Laboratory Methods in Infrared Spectroscopy (London: Heyden, 1972).

National Academy of Sciences, Understanding Climatic Change, A Program for Action (Washington, DC: NAS, 1975).

Philipp, H. R., Phys. Rev. 16B, 2896 (1977).

Pluchino, A. B., Goldberg, S. S., Dowling, J. M., and Randal, C. M., Appl. Optics <u>19</u>, 3370 (1980).

Purcell, E. M., Astrophys. J. 158, 433 (1969).

Rathmann, J., Ph.D. Dissertation, University of Arizona, Tucson (1981).

Sato, Y., J. Phys. Soc. Jpn. 24, 489 (1968).

Shobert II, E. I., in <u>Modern Materials</u>, Vol. 4, B. W. Gouser and H. H. Hausner, eds. (New York: Academic Press, 1964).

Steyer, T. R., Ph.D. Dissertation, University of Arizona, Tucson (1974).

Stull, V. R., and Plass, G., J. Opt. Soc. Am. 50, 121 (1960).

Taft, E. A., and Philipp, H. R., Phys. Rev. 138A, 197 (1965).

Tomaselli, V. P., Rivera, R., Edewaard, D. C., and Möller, K. D., Appl. Optics 20, 396 (1981).

Tossati, E., and Bassani, F., Nuovo Cimento <u>65B</u>, 161 (1970).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- Twitty, J. T., and Weiman, J. A., J. Appl. Meteo. <u>10</u>, 725 (1971).
- Twomey, S., and Huffman, D. R., in Light Absorption by Aerosol Particles (Hampton, VA: Spectrum Press, 1982).
- van de Hulst, H. C., Light Scattering by Small Particles (New York: John Wiley, 1957).
- Venghaus, H., Phys. Stat. Sol. (B) 71, 609 (1975).

, Phys. Stat. Sol. (B) 81, 221 (1977).

- Walker, P. L., Jr., in <u>Ultrafine Particles</u>, W. E. Kuhn, ed. (New York: John Wiley, 1963).
- Wickramasinghe, N. C., Light Scattering Functions for Small Particles (London: Adam Hilger, 1973).
- Williams, M. W., and Arakawa, E. T., J. Appl. Phys. <u>43</u>, 3460 (1972).
- Wooten, F., Optical Properties of Solids (New York: Academic Press, 1972).

Zeppenfeld, K., Phys. Lett. 25A, 335 (1967).

Ziman, J. M., Principles of the Theory of Solids (Cambridge: Cambridge University Press, 1969).

.