
AzCam User’s Manual

Michael Lesser

University of Arizona

Imaging Technology Laboratory

07 Oct, 2011

Table of Contents

Introduction ...2

Versioning .. 2

AzCam Commands ..2

Conventions .. 2

Return Values and Errors ... 3

Objects 3

User Commands .. 4

Scripts 4

Attributes ... 4

Header Commands .. 4

AzCamLog and AzCamMonitor ..5

Scripting ...5

AzCam DSP Code..6

Introduction

AzCam is a software image data acquisition and analysis system developed at the University of
Arizona Imaging Technology Laboratory. It is currently used for Astronomical Research Cameras,
Inc. Gen3, Gen2, and Gen1 CCD controllers and Magellan Guider controllers.

The AzCam web site containing the latest version of this document as well as files for downloading
is located at http://azcam.itl.arizona.edu.

Additional AzCam documentation includes:

 AzCamInstallationManual containing installation and configuration information

 AzCamToolsManual describing the standard graphical user interface

 HTML documentation of AzCam functions found on the AzCam web site

Versioning

AzCam consists of many different modules, some of which may be dynamically loaded, as well as
remote controller/telescope/instrument server code. There is therefore no single version number
or date which uniquely identifies all the code. A major version for AzCam can be read with

Get('Version'). It is a version string such as '4.60' and is incremented when significant

changes are made.

All python source code modules may be examined for version information at the top of each file.

AzCam Commands

This section describes AzCam syntax and commands. It applies to releases 4.0 and later. It is
intended for relatively advanced users of AzCam, including those writing scripts and client
applications.

The most up to date command information is always available from the automatically generated
HTML files found on the AzCam web site. It is useful to have some basic knowledge of python
when reading those files.

Conventions

Commands (or methods) and attributes (parameters) are named with MixedCase convention, as
in focalplane.SetFormat(1,512,1,512,1,1) or CheckAbort(). Objects (such as

focalplane) are always all lower case.

Commands must have parentheses following their names even if no attributes are required.

Commands and attributes are case sensitive. While some commands sent to the external
ControllerServer program are case insensitive, it is best to use the proper case for all commands
and attributes.

Filenames should be given with forward slash ('/') separators, even on Windows machines. If back
slashes are used for some reason, they must be doubled as in c:\\data.

http://www.astro-cam.com/
http://www.astro-cam.com/
http://obs.carnegiescience.edu/instrumentation/ccd/gcam.html
http://azcam.itl.arizona.edu/
http://azcam.itl.arizona.edu/Documents/AzCamInstallationManual.pdf
http://azcam.itl.arizona.edu/Documents/AzCamToolsManual.pdf
http://azcam.itl.arizona.edu/

Strings must be enclosed in quotation marks (single preferred), as in Get('Version').

Quotation marks must match ("Version' is not acceptable). A quotation mark may be included in a
string by preceding it with a backslash ("I am Mike\'s dog.")

AzCam commands should not use Python's print statement, but instead use the Print()

function, which prints to the AzCamLog system. Scripts may use the print statement as they are
generally designed to run from the command line. The issue here is that AzCam commands are
often run in threads by remote clients and printing to the console can easily become jumbled.

Return Values and Errors

Nearly all AzCam commands return a python list in the format: [status,value1,value2,..]

where status is the string OK, ERROR, WARNING, or ABORTED. OK means the command executed

successfully. ERROR means the command encountered a problem. WARNING is a special error

case which is considered non-fatal and should not produce a pop-up message in a client
application. ABORTED means a command or process was aborted, which may or may not be

interpreted as an error. Usually warnings appear only in the log window.

When status is ERROR, then value1 is always an error message string describing the problem.

The error message string is enclosed in quotes, as in:
ERROR 'bad parameter specified for action'.

When replying to a client, the python list is converted into a space delimited string, so that a
return value of ['OK',value1,'value2',..] would become OK value1 'value2'.

There are a (very) few commands which do not return a status for simplicity, such as Print()

and some analysis commands which simply return calculated values.

Objects

Python is an object oriented programming language and objects are used extensively in AzCam.
Object-based commands provide control of all aspects of AzCam. These commands (methods)
interact with hardware such as controllers, instruments, temperature controllers, and telescopes
as well as with more virtual objects such as the exposures, images, databases, time,
communication interfaces, etc.

The required command syntax is object.Command() where object is the object name (such as

controller, instrument, telescope) and Command() is the command to be sent. If

Command() uses attributes, they are specified as comma separated values of the appropriate

type, such as object.Command('ITL',1.234,45).

For example, to send the command CompsOn() to the instrument, use:

instrument.CompsOn().

To send the GetFocus() command to the telescope, use: telescope.GetFocus().

A focalplane command might be: focalplane.SetRoi(1,100,1,200,2,3).

User Commands

There are built-in AzCam commands which are always available to the command line. All
standard python commands are also always available to the command line.

A high level “user command” syntax may optionally be provided in additional to the standard
AzCam commands. User commands are defined on a system dependent basis and may include
both object based and commands which do not require object names.

Scripts

Scripts are Python commands which are intended to be run at the AzCam command line. They
may or may not be defined as User Commands. Care should be taken when scripts are executed by
remote clients since they often require user input (prompting) which is not supported remotely.
Scripts are especially useful to invoke GUIs such as PyQt programs and to execute user written

commands. Scripts are executed by the Run command and must be in the Python search path. See

the Scripting section later in this manual.

Attributes

Python attributes may be read with the Get()command and written with the Set()command. It

is recommended that Get() and Set() be used when reading and writing attributes from remote

clients. For example, Get('ImageType') returns the current image type. The return value

might be ['OK', 'zero', 'str']. The first value being the status, the second ImageType, the third
indicating the return values type (useful for clients which see all values as strings.

Object attributes may also be read and changed directly with Set() and Get(), although clients

should be very carefully when modifying objects directly. For example:

Get('controller.TimingBoardInstalled') returns the value of the

TimingBoardInstalled parameter from the controller object, as well as its data type

specified as a string, ‘int’ in this case.

Note that Set('instrument.SomeParameter') is not the same as

Set('telescope.SomeParameter'), since SomeParameter in each case is an attribute of a

different object. If no object is provided, then the Globals object is assumed (which contains

global variables across all objects).

Header Commands

AzCam uses object specific keyword indexed dictionary to maintain textual informational about
some objects. These are typically called headers as they are used to provide information in image
headers. The keywords and their corresponding values, data type, and comment field are stored

in each of the controller, instrument, and telescope .header dictionary. These dictionaries are

manipulated by commands both from clients and internally in AzCam. Most of the values are
written to the image file header (such as a FITS header) when an exposure begins. The
dictionaries are accessed through methods such as

controller.Header.GetAllKeywords() and
instrument.Header.GetKeyword('FILTER1').

The ReadHeader()method of each object will actively read hardware to obtain information

(such as controller.ReadHeader() or instrument.ReadHeader()). This is very

different from the object.Header.xxx methods which only manipulate the internal Header

databases.

The telescope and instrument dictionaries are considered temporary and re-read every time an
exposure starts. This is so that rapidly changing data values do not become stale.

Most dictionary information is written to the image file header if the selected image format
supports headers. When an object such as an instrument or telescope is disabled, the
corresponding object database information is deleted and no longer updated.

AzCamLog and AzCamMonitor

AzCamLog is a console-like window which by default appears automatically along with the main
AzCam window and is used to display messages. These messages do not appear in the main
console window since there would then be a complex mixture of messages from command line
commands, internal threading commands which run in the back ground, and remote client
commands. AzCamLog is a special usage of AzCamMonitor.

AzCamMonitor is a python client which can be used to display messages from AzCam in a remote
process. It is for monitoring only, no commands are sent to AzCam from AzCamMonitor. To start
AzCamMonitor, execute the StartAzCamMonitor.bat batch file. Edit the command line
parameters -s ServerName and -p PortNumber as needed. ServerName is the host name
of the machine running AzCam and PortNumber is the AzCam monitor port on AzCam (usually
one greater than the base port, so typically 2403 for the first AzCam process). Prompts will be
displayed if no command line parameters are specified.

Scripting

Scripts may be executed within AzCam for any user-defined tasks including data acquisition and
image analysis. Scripts must be written in pure python.

There are many modules which define the various AzCam commands. These modules must be
imported into a script before they can be used. Scripts should include the line:

from AzCam import *

to include the base AzCam commands. Scripts should also include the line:

from UserCommands import *

to include user defined commands, if they exist.

After these files are imported, the AzCam commands are available as for example,
exposure.Expose() or controller.Reset().

A script cannot be run outside of AzCam (e.g. from File Explorer) since scripts require global data
structures which are only defined within the AzCam python enviroment. We do not recommend
executing scripts from a remote client since there may be complex interactions between plotting
windows, the command line console, and task running in the background. Running some scripts
which do not have user interaction can be safe when called from a remote client.

Scripts are usually executed using the Run command, as Run GetTemps. This method has the

advantage of loading the script each time the run command is called which is useful when
debugging a script. In the first method above the script is only imported when AzCam starts and
subsequent script edits are not registered. When arguments are supplied on the command line
using Run they must be space delimited and not placed in parentheses. So
Run GetTemps 0.2 'logfile1.txt'

is OK but
Run GetTemps(0.2,'logfile1.txt')

is not. Scripts may have an initialization file (scriptname.ini) which is used to read and save
defaults values. These files are located in a subfolder named params of the SystemFolder and are
usually created automatically as needed.

Scripts may be included automatically in the AzCam startup procedure by adding them to the
UserCommands module. They can then be executed without the Run command (e.g.

SetDefauts() rather than Run SetDefaults).

AzCam DSP Code

The DSP code which runs in the ARC and Magellan controllers is assembled and linked with
Motorola software tools. The Motorola DSP tools installer can be found on the AzCam web site.

This file installs to create to the folder structure /AzCam/MotorolaDSPtools/ which is required by
the batch files which assemble and link the DSP source code.

While the AzCam application code for the ARC timing board is typically downloaded during
camera initialization, the boot code must be compatible for this to work properly. Therefore
AzCam DSP code must be burned into the timing board EEPROMs before use. The AzCam timing
DSP code is quite different from the ARC code and is required for AzCam operation. The PCI fiber
optic interface board and the utility board use the original ARC code and does not need to be
changed. Note this applies to gen3 systems only, the gen1 and gen2 situation is more complex.

For the Magellan systems, there is only one DSP file which must be downloaded during
initialization. Note that xxx.s files are loaded for the Magellan systems while xxx.lod files are loaded
for ARC systems.

